Science Physics Unit 4: Energy

	 Causation: Nothing "just happens." Everything is caused.
	Interrelatedness: Everything in the universe is connected to
	everything else in the universe.
Essential	 Dynamism: Everything is changing in some way all the time
Understandings	 Entropy: Change has direction. Generally simple precedes.
onderstandings	- Entropy. Change has direction. Generally, simple precedes
	complex. Generally, order changes toward disorder.
	 Uniformitarianism: The way the universe works today is the way it
	worked yesterday and the way it will work tomorrow.
	How is energy conserved?
Essential	How is energy transferred?
Questions	 How are work, kinetic energy, momentum, and potential energy
	interconnected?
	Work transfers energy.
Essential	 Energy is conserved.
Knowledge	 Work, kinetic energy, and potential energy are measured by the
	same quantity: joules.
	Terms:
	 conserved elastic collision impulse inelastic collision law
	of conservation of momentum momentum efficiency
Vocabulary	operav fulcrum joule kinetic operav law of conservation of
Vocabulary	energy, fulctum, joue, kinetic energy, law of conservation of
	energy, lever, machine, mechanical advantage, mechanical
	energy, potential energy, power, work, watt, gravitational
	potential energy
	 Use mathematics to calculate momentum, impulse, work, power,
Essential	kinetic energy and potential energy.
Skills	 Determine where energy is transferred throughout a system.
	 Analyze simple machines and compound machines to determine
	efficiency.
	Science and Technology
	D. The Physical Setting
	D4.Force and Motion
	Students understand that the laws of force and motion are the
Related	same across the universe
Maine Learning	a Describe the contribution of Newton to our understanding of
Roculte	force and motion, and give examples of and apply Newton's
Neguita	throe laws of motion and his theory of gravitation
	b Evaluation and early the ideas of relative motion and from of
	b. Explain and apply the ideas of relative motion and frame of
	reference.
	T. Describe kinetic energy (the energy of motion), potential energy
	(dependent on relative position), and energy contained by a
	field (including electromagnetic waves) and apply these
	understandings to energy problems.

Science Physics Unit 4: Energy

Sample	 Word problem worksheets
Lessons	 Motion Labs, i.e., constant velocity, acceleration
And	 Lectures
Activities	 Work and momentum demonstrations
	 Work and momentum videos
Sample	 Chapter tests
Classroom	 Motion quizzes
Assessment	 Laboratory reports
Methods	
	Publications:
	 <u>Physical Science</u> - Glencoe
Sample	 MARVEL Data bases
Resources	 GALE Resource Data bases
	Videos:
	 <u>The Mechanical Universe</u>
	 <u>ESPN Sports Figures</u>