Science Physics Unit 1: Kinematics

	 Causation: Nothing "just happens." Everything is caused.
	Interrelatedness: Everything in the universe is connected to
Essential	everything else in the universe.
Understandings	 Dynamism: Everything is changing in some way all the time.
5	 Entropy: Change has direction. Generally, simple precedes
	complex. Generally, order changes toward disorder.
	 Uniformitarianism: The way the universe works today is the way it
	worked vesterday and the way it will work tomorrow.
	 What are the similarities and differences among speed, velocity
	and acceleration?
	 How does the slope of a position/time graph represent the motion
Essential	of an object?
Questions	 How does the slope of a position/time graph predict the motion of
	an object?
	What does the slope of a velocity/time curve represent?
	What are the ideas of relative motion and frames of reference?
	How does inertia relate to the change in motion of an object?
	 Motion is the change of position.
	• Average speed is the ratio of distance traveled to the time elapsed.
Essential	 Acceleration is the rate at which velocity changes.
Knowledge	Inertia is the amount an object resists change to its current motion.
C C	 Mass is the measure of the object's inertia.
	Terms:
	 acceleration, average speed, component, free fall,
Vocabulary	instantaneous speed, relative motion, resolution, resultant,
	scalar, speed, vector, velocity
	 Use mathematics to calculate velocity, acceleration, time and
Essential	distance.
Skills	 Analyze motion to realize the relationships among distance,
	velocity and acceleration.
	 Interpret the slopes on motion graphs.
	Science and Technology
	D. The Physical Setting
	D4.Force and Motion
Related	Students understand that the laws of force and motion are the
Maine Learning	same across the universe.
Results	a. Describe the contribution of Newton to our understanding of
	force and motion, and give examples of and apply Newton's
	three laws of motion and his theory of gravitation.
	b. Explain and apply the ideas of relative motion and frame of
	reference.

Science Physics Unit 1: Kinematics

Sample	 Word problem worksheets
Lessons	 Motion Labs, i.e., constant velocity, acceleration
And	 Lectures
Activities	 Motion demonstrations
	 Motion Videos
Sample	 Chapter tests
Classroom	 Motion quizzes
Assessment	 Laboratory reports
Methods	
	<u>Publications:</u>
	 <u>Physical Science</u> - Glencoe
Sample	 MARVEL Data bases
Resources	 GALE Resource Data bases
	Videos:
	 <u>The Mechanical Universe</u>
	 <u>ESPN Sports Figures</u>