	Conceptual:
	 The reoccurring fundamental principles elaborated in physics
	have uses and implications in every dimension of modern life.
	 Physics seeks to analyze and understand every system as a
	demonstration of the cause-effect relationship
	Computational:
Essential	 Description of a system in order to
Lasendingo	departise and understand it
Understandings	describe, analyze and understand it.
	 A variety of problem solving techniques make use of a
	system's quantities to investigate the conceptual relationships
	evidenced within the system.
	 Numerical problem solving is an essential component in
	developing a clear understanding of the conceptual
	relationships identified within any system.
	How is the charge of an electron and a proton quantified?
	Why is the conservation of charge important?
	How can Coulomb's Law allow us to calculate forces on charges?
Essential	How can we determine the magnitude of an electric field?
Questions	Why is shielding important in electrical systems?
	How does flux relate to charge enclosed by a given surface?
	How is electric potential different from electric potential energy?
	 There is a certain amount of charge in the universe. We can only
	move and redistribute that charge
	 Like charges repel and unlike charges attract
Essential	 Conductance relates to the outer electrons in the atoms of matter
Knowledge	 Electric fields are force per unit charge
Kilowiedge	 Creative fields are force per unit charge. Gauss's Law relates the charge opclosed to the electric flux.
	- Gauss's Law relates the charge enclosed to the electric hux
	A consister is a device that stores electric charge
	A capacitor is a device that stores electric charge.
Maaabadama	<u>rems</u> :
vocabulary	 charge, insulator, conductor, polarization, superposition,
	spherical charge distribution, electric field, electric field lines,
	shielding, electric flux, electric potential, electric potential
	energy, equipotential surfaces
	 Calculate the forces on a charged particle by other charged
	particles
	 Calculate the field at any location around a matrix of charged
Essential	particles.
Skills	 Calculate the flux through a surface.
	 Draw electric field lines.
	 Calculate the speed of a charge in a field
	 Determine the capacitance of various geometries of charged
	objects.

	Science and Technology
	A. Unifying Themes
	A1.Systems
	Students apply an understanding of systems to explain and
	analyze man-made and natural phenomena.
	a Analyze a system using the principles of boundaries
	subsystems inputs outputs feedback or the system's
	relation to other evoteme and design calutions to a evotem
	b. Explain and provide examples that illustrate how it may not
	always be possible to predict the impact of changing some
Related	part of a man-made or natural system.
Maine Learning	C. The Scientific and Technological Enterprise
Results	C4. History and Nature of Science
	Students describe the human dimensions and traditions of
	science, the nature of scientific knowledge, and historical
	episodes in science that impacted science and society.
	a. Describe the ethical traditions in science including peer
	review, truthful reporting, and making results public.
	b Select and describe one of the major episodes in the history
	of science including how the scientific knowledge changed
	over time and any important effects on science and society
	C. Give examples that show how societal cultural and
	c. Give examples that show now societal, cultural, and
	personal beliefs and ways of viewing the world can blas
	SCIENUSIS.
	a. Provide examples of criteria that distinguish scientific
	explanations from pseudoscientific ones.

	D. The Physical Setting
	D3.Matter and Energy
Related Maine Learning Results	Students describe the structure, behavior, and interactions of
	matter at the atomic level and the relationship between matter
	and energy.
	a. Describe the structure of atoms in terms of neutrons,
	protons, and electrons and the role of the atomic structure in
	determining chemical properties.
	b. Describe how the number and arrangement of atoms in a
	molecule determine a molecule's properties, including the
	types of bonds it makes with other molecules and its mass,
	and apply this to predictions about chemical reactions.
	c. Explain the essential roles of carbon and water in life
	processes.
	 Describe how light is emitted and absorbed by atoms'
	changing energy levels, and how the results can be used to
	identify a substance.
	 Describe factors that affect the rate of chemical reactions
	(including concentration, pressure, temperature, and the
	presence of molecules that encourage interaction with other
	molecules).
	f. Apply an understanding of the factors that affect the rate of
	chemical reaction to predictions about the rate of chemical
	reactions.
	g. Describe nuclear reactions, including fusion and fission, and
	the energy they release.
	n. Describe radioactive decay and nali-life.
	I. Explain the relationship between kinetic and potential
	i Describe how in operate transformations the total amount of
	J. Describe now in energy transformations the total amount of
	(heat cound, and vibration) useful energy is often lost
	through radiation or conduction
	k Apply an understanding of energy transformations to solve
	nrohlems
	Describe the relationship among heat temperature and
	pressure in terms of the actions of atoms molecules and
	ions.
	 Actively read the text book completing the examples presented.
Sample	 Individually answer conceptual questions and solve problems.
Lessons	 Collectively discuss the answers and solutions in class.
And	 Discuss real world examples of concepts presented in the textbook
Activities	and encountered in the real world.
	 Techtronix Circuit building laboratories

Sample	 Homework assignments.
Classroom	 Assess understanding in classroom discussions.
Assessment	 Written examinations with real world conceptual questions and
Methods	numerical problems.
	<u>Publications</u> :
	 <u>Physics</u> Second Edition - James S. Walker
	Videos:
Sample	 Mechanical Universe Video Series
Resources	Other Resources:
	 Companion Website: <u>http://physics.prenhall.com/walker</u>
	 Physics Demonstrations in Mechanics
	 Gibson's Techtronic curriculum and kits