Science Physics: Honors Unit 5: Momentum

	Conceptual:
	• The reoccurring fundamental principles elaborated in physics
	have uses and implications in every dimension of modern life.
	 Physics seeks to analyze and understand every system as a
	demonstration of the cause-effect relationship.
Essential	 Computational:
Understandings	 Physics quantifies each variable of a system in order to
_	describe, analyze and understand it.
	 A variety of problem solving techniques make use of a
	system's quantities to investigate the conceptual relationships
	evidenced within the system.
	 Numerical problem solving is an essential component in
	developing a clear understanding of the conceptual
	relationships identified within any system.
	 What is the difference between conservative and nonconservative
	forces?
Essential	When is mechanical energy conserved?
Questions	What is the difference between impulse and impact?
	 How are elastic and inelastic collisions the same and how are they
	different?
	How does the center of mass of a complex object move?
	 Linear momentum is a vector that is the product of mass and
	velocity.
	I he total momentum of a system is the vector sum of individual
Essential	momenta.
Knowledge	Newton's Second Law can be stated as the change in momentum
	divided by the time interval.
	Impulse is the change of momentum and also the average force times the time that the force is explicit.
	Thrust in the change of more times the velocity divided by the time.
	 Thrust is the change of mass times the velocity divided by the time interval
Vocabulary	○ linear momentum impulse impact recoil inelastic collisions
voousalary	elastic collisions center or mass thrust
	 Calculate the total momentum of a system
	 Calculate the impulse experienced in a collision.
Essential	 Find the final velocity of the object that results from a perfectly
Skills	inelastic collision.
	 Determine the final velocities of each object after an elastic
	collision.
	 Determine the center of mass of a complex object.

Science Physics: Honors Unit 5: Momentum

	Science and Technology
	A. Unifying Themes
	A1.Systems
	Students apply an understanding of systems to explain and
	analyze man-made and natural phonomena
	analyze man-made and hatdrai phenomena.
	a. Analyze a system using the principles of boundaries,
	subsystems, inputs, outputs, reedback, or the system's
	relation to other systems and design solutions to a system
	problem.
	 Explain and provide examples that illustrate how it may not
	always be possible to predict the impact of changing some
	part of a man-made or natural system.
	B. The Skills and Traits of Scientific Inquiry and Technological Design
	B2.Skills and Traits of Technological Design
	Students use a systematic process tools and techniques and a
	variety of materials to design and produce a solution or product
	that meets new needs or improves existing designs
	a Identify new problems or a current design in pood of
Polotod	a. Identity new problems of a current design in need of
Related Maine Learning	Improvement h. Concrete alternative design calutions
	b. Generate alternative design solutions.
Results	c. Select the design that best meets established criteria.
	d. Use models and simulations as prototypes in the design
	planning process.
	 Implement the proposed design solution.
	 Evaluate the solution to a design problem and the
	consequences of that solution.
	g. Present the problem, design, process, and solution to a
	design problem including models, diagrams, and
	demonstrations.
	C. The Scientific and Technological Enterprise
	C4 History and Nature of Science
	Students describe the human dimensions and traditions of
	science, the pature of scientific knowledge, and historical
	science, the hattire of scientific knowledge, and historical
	episodes in science that impacted science and society.
	a. Describe the ethical traditions in science including peer
	review, truthful reporting, and making results public.
	b. Select and describe one of the major episodes in the history
	of science including how the scientific knowledge changed
	over time and any important effects on science and society.
	c. Give examples that show how societal, cultural, and
	personal beliefs and ways of viewing the world can bias
	scientists.
	d. Provide example of criteria that distinguish scientific
	explanations from pseudoscientific ones.

Science Physics: Honors Unit 5: Momentum

	D. The Physical Setting
	D3 Matter and Energy
	Students describe the structure behavior and interactions of
	matter at the atomic level and the relationship between matter
	and energy
	and energy.
	J. Describe now in energy transformations the total amount of
	energy remains the same, but because of inefficiencies
	(heat, sound, and vibrations) useful energy is often lost
Related	through radiation or conduction.
Maine Learning	D4.Force and Motion
Results	Students understand that the laws of force and motion are the
	same across the universe.
	a. Describe the contribution of Newton to our understanding
	of force and motion, and give examples of and apply
	Newton's three laws of motion and his theory of
	aravitation
	Read the text book and complete the examples presented
Sample	 Individually answer concentual questions and solve problems
	 Collectively discuss the answers and solutions in class
And	 Discuss real world examples of concepts presented in the textback
And	 Discussified world examples of concepts presented in the textbook and appointered in the real world
Activities	and encountered in the real wond.
	 Use Pasco data collection system to quantitatively explore elastic
	and inelastic collisions.
Sample	 Evaluate homework assignments.
Classroom	 Assess understanding in classroom discussions.
Assessment	 Grade and discuss laboratory reports.
Methods	 Evaluate written formative and summative assessments with real
	world conceptual questions and numerical problems.
	Publications:
	 <u>Physics</u> Second Edition - James S. Walker
	Videos:
Sample	 Mechanical Universe Video Series
Resources	Other Resources:
	 Companion Website: http://physics.prenhall.com/walker
	 Physics Demonstrations in Mechanics
	 Pasco's Data Studio program