Science Physics: Honors Unit 4: Work and Energy

	Conceptual:
	• The reoccurring fundamental principles elaborated in physics
	have uses and implications in every dimension of modern life.
	 Physics seeks to analyze and understand every system as a
	demonstration of the cause-effect relationship.
	Computational:
Essential	 Physics quantifies each variable of a system in order to
Understandings	describe, analyze and understand it.
	 A variety of problem solving techniques make use of a
	system's quantities to investigate the conceptual relationships
	evidenced within the system.
	 Numerical problem solving is an essential component in
	developing a clear understanding of the conceptual
	relationships identified within any system.
	How do the everyday and scientific definitions of work differ?
Essential	 What is the difference between conservative and non-conservative
Questions	work?
	How are work and power related?
	 Work is the transfer of energy that occurs when a force causes an
	object to move.
	Energy can neither be created nor destroyed.
Essential	 Work equals force time distance.
Knowledge	If work is done, the force and distance must be in the same
	direction.
	 Work is done when the kinetic energy changes. Crewitation Detential Energy is preparticulate the mass and to the
	Gravitation Potential Energy is proportional to the mass and to the height of the object.
	neight of the object.
	 Springs can store elastic potential energy. Tormo:
Veeebulenv	<u>Items</u> :
vocabulary	 work, joule, kinetic energy, potential energy, power, work- operative theorem, equipatentiale
	Colculate kinetic operational potential operation
Eccential	 Calculate work and power
Skille	 Calculate work and power. Use the Law of Conservation of Energy to write balanced
JUIIS	- Use the Law of Conservation of Energy to white balanced
	 Investigate energy transformations

Science Physics: Honors Unit 4: Work and Energy

	1
	Science and Technology
	A. Unifying Themes
	A1 Systems
	Students apply an understanding of systems to explain and
	Students apply an understanding of systems to explain and
	analyze man-made and natural phenomena.
	a. Analyze a system using the principles of boundaries,
	subsystems, inputs, outputs, feedback, or the system's
	relation to other systems and design solutions to a system
	problem.
	b. Explain and provide examples that illustrate how it may not
	always be possible to predict the impact of changing some
	nart of a man-made or natural system
	P The Skille and Traite of Scientific Inquiry and Technological Design
	D. The Skills and Traits of Scientific inquiry and rechnological Design
	B2.5kills and Traits of Technological Design
	Students use a systematic process, tools and techniques, and a
	variety of materials to design and produce a solution or product
	that meets new needs or improves existing designs.
	 Identify new problems or a current design in need of
Related	improvement
Maine Learning	b. Generate alternative design solutions.
Results	c Select the design that best meets established criteria
Results	d. Use models and simulations as prototypes in the design
	u. Use models and simulations as prototypes in the design
	planning process.
	e. Implement the proposed design solution.
	f. Evaluate the solution to a design problem and the
	consequences of that solution.
	 g. Present the problem, design, process, and solution to a
	design problem including models, diagrams, and
	demonstrations.
	C. The Scientific and Technological Enterprise
	C4 History and Nature of Science
	Students describe the human dimensions and traditions of
	science, the nature of scientific knowledge, and historical
	opicedes in science that impacted science and society
	episodes in science that impacted science and society.
	a. Describe the ethical traditions in science including peer
	review, truthful reporting, and making results public.
	b. Select and describe one of the major episodes in the history
	of science including how the scientific knowledge changed
	over time and any important effects on science and society.
	c. Give examples that show how societal, cultural, and
	personal beliefs and ways of viewing the world can bias
	scientists
	d Provide example of criteria that distinguish scientific
	evolutions from psoudosciontific open

Science Physics: Honors Unit 4: Work and Energy

	D. The Physical Setting
	D3.Matter and Energy
	Students describe the structure, behavior, and interactions of
	matter at the atomic level and the relationship between matter
	and energy.
	i. Explain the relations between kinetic and potential energy
	and apply the knowledge to solve problems.
	i. Describe how in energy transformations the total amount of
Related	energy remains the same, but because of inefficiencies
Maine Learning	(heat, sound, and vibrations) useful energy is often lost
Results	through radiation or conduction
Roound	k Apply an understanding of energy transformations to solve
	problems
	D4 Force and Motion
	Students understand that the laws of force and motion are the
	same across the universe.
	f. Describe kinetic energy (the energy of motion), potential
	energy (dependent on relative position), and energy
	contained in a filed (including electromagnetic waves) and
	apply these understandings to energy problems.
	 Read the textbook and complete the examples presented.
Sample	 Individually answer conceptual questions and solve problems.
Lessons	 Collectively discuss the answers and solutions in class.
And	 Discuss real world examples of concepts presented in the textbook.
Activities	and encountered in the real world.
	 Pasco Data Studio introductory laboratory.
	 "Release Your Potential" laboratory exercise.
Sample	 Homework assignments.
Classroom	 Assess understanding in classroom discussions.
Assessment	 Written formative and summative assessments with real world
Methods	conceptual questions and numerical problems.
	Publications:
Sample	 Physics - James S. Walker
Resources	• Videos:
	 Mechanical Universe series
	Other Resources:
	 Companion Website: http://physics.prenhall.com/walker
	 Physics demonstrations in mechanics