Science Physics: Honors Unit 3: Newton's Laws of Motion

Essential Understandings	 <u>Conceptual</u>: The reoccurring fundamental principles elaborated in physics have uses and implications in every dimension of modern life. Physics seeks to analyze and understand every system as a demonstration of the cause-effect relationship. <u>Computational</u>: Physics quantifies each variable of a system in order to describe, analyze and understand it. A variety of problem solving techniques make use of a system's quantities to investigate the conceptual relationships evidenced within the system. Numerical problem solving is an essential component in developing a clear understanding of the conceptual relationships identified within any system.
Essential Questions	 What is the difference between weight and mass? How does a net force affect the motion of an object? In what way does inertia impact the movement of an object? How is apparent weight different from weight? What is the difference between Static and kinetic friction?
Essential Knowledge	 Forces act in equal and opposite pairs. Normal forces act perpendicular to the surface. Frictional forces act parallel to surfaces. Weight is the gravitational force on an object. The sum of the forces equals the mass of an object times the acceleration experienced by that object. Acceleration is zero when in Translational Equilibrium. Acceleration is always in the direction of the net force. Hooke's Law explains the force and the displacement of springs.
Vocabulary	 <u>Terms</u>: inertia, mass, free body diagram, normal force, friction, apparent weight, kinetic friction, static friction, coefficient of friction, spring constant (k), Translational Equilibrium, centripetal acceleration
Essential Skills	 Draw Free Body Diagrams. Analyze systems of forces. Calculate acceleration in orthogonal directions. Compute frictional forces between objects. Analyze systems of connected objects. Use centripetal acceleration to calculate circular velocity.

Science Physics: Honors Unit 3: Newton's Laws of Motion

	Science and Technology
	A. Unifying Themes
	A1.Systems
	Students apply an understanding of systems to explain and
	analyze man-made and natural phenomena.
	 Analyze a system using the principles of boundaries,
	subsystems, inputs, outputs, feedback, or the system's
	relation to other systems and design solutions to a system
	problem.
	A2.Models
	Students evaluate the effectiveness of a model by comparing its
	predictions to actual observations from the physical setting, the
	living environment, and the technological world.
	A3.Constancy and Change
	Students identify and analyze examples of constancy and
Related	change that result from varying types and rates of change in
Maine Learning	physical, biological, and technological systems with and without
Results	counterbalances.
	C. The Scientific and Technological Enterprises
	C2.Understandings About Science and Technology
	Students explain how the relationship between scientific inquiry
	and technological design influences the advancement of ideas,
	products, and systems.
	a. Provide an example that shows how science advances with
	the introduction of new technologies and how solving
	technological problems often impacts new scientific
	knowledge.
	b. Provide examples of how creativity, imagination, and a good
	knowledge base are required to advance scientific ideas and
	technological design.
	c. Provide examples that illustrate how technological solutions
	to problems sometimes lead to new problems or new fields
	of inquiry.

Science Physics: Honors Unit 3: Newton's Laws of Motion

	D. The Physical Setting
	D4.Force and Motion
	Students understand that the laws of force and motion are the
	same across the universe.
	a. Describe the contribution of Newton to our understanding of
	force and motion, and give examples of and apply Newton's
	three laws of motion and his theory of gravitation.
	b. Explain and apply the ideas of relative motion and frame of
Related	reference.
Maine Learning	c. Describe the relationship between electric and magnetic
Results	fields and forces, and give examples of how this relationship
	is used in modern technologies.
	d. Describe and apply characteristics of waves including
	wavelength, frequency, and amplitude.
	e. Describe and apply an understanding of how waves interact
	with other waves, and with materials including reflection,
	refraction, and absorption.
	f. Describe kinetic energy (the energy of motion), potential
	energy (dependent on relative position), and energy
	contained by a field (including electromagnetic waves) and
	apply these understandings to energy problems.
Sample	 Actively read the text book completing the examples presented
Lessons	 Individually answer conceptual questions and solve problems
And	 Collectively discuss the answers and solutions in class
Activities	 Discuss real world examples of concepts presented in the textbook
Activities	and encountered in the real world
	 Centripetal Force Lab
	 Atwood Machine Lab with Pasco sensors
Sample	 Atwood Machine Lab with Pasco sensors Homework assignments.
Classroom	 Assess understanding in classroom discussions.
Assessment	 Assess understanding in classroom discussions. Free Body Diagram quiz
Methods	, , , ,
wiethous	Whiteh formative and Summative assessments with real world
	conceptual questions and numerical problems
	 <u>Publications</u>: <u>Development adition</u> James S. Wellyer
	 <u>Physics</u>, second edition - James S. Walker
	 <u>Videos</u>:
Sample	 <u>Mechanical Universe</u> Video Series
Resources	<u>Other Resource</u> :
	 Companion Website: <u>http://physics.prenhall.com/walker</u>
	 Physics Demonstrations in Mechanics
	 The University of Maine Tutorials 8-10