Science
Unit 5: Forensics and Scientific Method

| Essential Understandings | Forensic scientists follow the scientific method to investigate and solve crimes.
| | A forensic scientist must be an accurate observer and recorder.
| | A relationship exists between evidence and explanation.
| | Logical conclusions are based on evidence and not influenced by bias or generalizations.
| | Evidence, no matter how small, can have a big impact.
| | Experiments should be repeatable through methodology.
| | Many scientific and technological discoveries have taken place by accident, by chance, or by necessity. |

| Essential Questions | What is forensics?
| | What are the different types of evidence that can be found at a crime scene?
| | What are the characteristics of a successful forensic scientist?
| | How can evidence be preserved?
| | What conclusions can be drawn from the different types of evidence?
| | What is the scientific method?
| | What is a testable hypothesis?
| | What makes an experiment fair and well-designed?
| | What is bias and how can it affect conclusions?
| | What technologies exist to solve crimes and how has it changed over time? |

| Essential Knowledge | There are many tools that a forensics scientist uses to solve crimes.
| | There are three basic types of fingerprints.
| | Questions can be answered through scientific investigations.
| | Descriptions, explanations, predictions, and models can be developed using evidence.
| | Findings must be communicated in a way the audience can understand. |

| Vocabulary | Terms:
| | evidence, data, forensics, fibers, fingerprints, DNA, experiment, observation, inference, deduction, scientific method, contamination, prediction, hypothesis, variables (independent, dependent, controlled), sample size, conclusion, analysis, evaluate, trials, subjects, bias |

| Essential Skills | Support reasoning using a variety of evidence.
| | Determine your own type of fingerprint.
| | Make observations accurately.
| | Identify and perform roles necessary to accomplish group tasks.
| | Conduct an experiment and communicate the results.
| | Measure using the SI system. |
Related Maine Learning Results

<table>
<thead>
<tr>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. The Skills and Traits of Scientific Inquiry and Technological Design</td>
</tr>
<tr>
<td>B1. Skill and Traits of Scientific Inquiry</td>
</tr>
<tr>
<td>Students plan, conduct, analyze data from, and communicate results of investigations, including simple experiments.</td>
</tr>
<tr>
<td>a. Identify questions that can be answered through scientific investigations.</td>
</tr>
<tr>
<td>b. Design and safely conduct scientific investigations including experiments with controlled variables.</td>
</tr>
<tr>
<td>c. Use appropriate tools, metric units, and techniques to gather, analyze, and interpret data.</td>
</tr>
<tr>
<td>d. Use mathematics to gather, organize, and present data and structure convincing explanations.</td>
</tr>
<tr>
<td>e. Use logical, critical reasoning and evidence to develop descriptions, explanations, predictions, and models.</td>
</tr>
<tr>
<td>f. Communicate, critique, and analyze their own scientific work and the work of other students.</td>
</tr>
<tr>
<td>B2. Skills and Traits of Technological Design</td>
</tr>
<tr>
<td>Students use a systematic process, tools, equipment, and a variety of materials to design and produce a solution or product to meet a specified need, using established criteria.</td>
</tr>
<tr>
<td>a. Identify appropriate problems for technological design.</td>
</tr>
<tr>
<td>b. Design a solution or product.</td>
</tr>
<tr>
<td>c. Communicate a proposed design using drawings and simple models.</td>
</tr>
<tr>
<td>d. Implement a proposed design.</td>
</tr>
<tr>
<td>e. Evaluate a completed design or product.</td>
</tr>
<tr>
<td>f. Suggest improvements for their own and others’ designs and try out proposed modifications.</td>
</tr>
<tr>
<td>g. Explain the designs process including the stages of problems identification, solution design, implementation, and evaluation.</td>
</tr>
</tbody>
</table>
Science
Unit 5: Forensics and Scientific Method

Related Maine Learning Results

- **C. The Scientific and Technological Enterprise**
 - **C1. Understandings of Inquiry**
 - Students describe how scientists use varied and systematic approaches to investigations that may lead to further investigations.
 - **a.** Explain how the type of question informs the type of investigation.
 - **b.** Explain why it is important to identify and control variables and replicate trials in experiments.
 - **c.** Describe how scientists’ analyses of findings can lead to new investigations.
 - **C2. Understandings About Science and Technology**
 - Students understand and compare the similarities and differences between scientific inquiry and technological design.
 - **a.** Compare the process of scientific inquiry to the process of technological design.
 - **b.** Explain how constraints and consequences impact scientific inquiry and technological design.
 - **C3. Science, Technology, and Society**
 - Students identify and describe the role of science and technology in addressing personal and societal challenges.
 - **c.** Identify factors that influence the development and use of science and technology.

Sample Lessons and Activities

- Crime scene handouts
- Labs (e.g., fingerprinting, counterfeiting, chemical reagent)
- Design, run, and communicate the results of an experiment

Sample Classroom Assessment Methods

- Analysis of a crime scene
- Science Fair presentation

Sample Resources

- **Publications:**
 - Crime and Detection – Brian Lane
- **Videos:**
 - Scientific Method
- **Materials:**
 - hand lenses, microscopes
 - People: School Resource Officer
- **Videos:**
 - Forensics – Bill Nye
Science
Unit 5: Forensics and Scientific Method