	Causation: Nothing "just happens". Everything is caused.
	 Interrelatedness: Everything in the universe is connected to
	everything else in the universe.
Essential	 Dynamism: Everything is changing in some way all the time.
Understandings	Entropy: Change had an oddon: Contrally, omple procede
	complex. Generally, order changes toward disorder.
	Uniformitarianism: The way the universe works today is the way it
	worked yesterday and the way it will work tomorrow.
	What is matter?
	What is the kinetic theory of matter?
Essential	What are the macroscopic characteristics of each state of matter?
Questions	What are the microscopic characteristics of each state of matter?
	What constitutes a physical property and physical change?
	 All matter is made of moving particles.
	 All matter exists in one of the four states but can change state
Essential	based on the gain or loss of energy.
Knowledge	 Scientific laws and principles govern how matter responds to
	changes of density, pressure, and temperature.
	■ <u>Terms</u> :
Vocabulary	 matter, solid, liquid, gas, plasma, crystals, heat of fusion,
_	heat of vaporization, thermal expansion
	 Calculate the relationships among temperature, pressure and
Essential	volume.
Skills	 Use the relationship among force, area, and pressure.
	 Distinguish among solid, liquid, gas and plasma.
	Science and Technology
Related	A. Unifying Themes
Maine Learning	A2.Models
Results	Students evaluate the effectiveness of a model by comparing its
	predications to actual observations from the physical setting,
	the living environment, and the technological world.

	B. The Skills and Traits of Scientific Inquiry and Technological Design
	B1.The Skills and Traits of Scientific Inquiry
	Students methodically plan, conduct, analyze data from, and
	communicate results of in-depth scientific investigations,
	including experiments guided by a testable hypothesis.
	a. Identify questions, concepts, and testable hypotheses that
Related	guide scientific investigations.
Maine Learning	b. Design and safely conduct methodical scientific
Results	investigations, including experiments with controls.
	c. Use statistics to summarize, describe, analyze, and interpret results.
	 d. Formulate and revise scientific investigations using logic and evidence.
	e. Use a variety of tools and technologies to improve
	investigations and communications.
	f. Recognize and analyze alternative explanations and models
	using scientific criteria.
	g. Communicate and defend scientific ideas.

D. The Physical Setting D3.Matter and Energy

Students describe the structure, behavior, and interactions of matter at the atomic level and the relationships between matter and energy.

- a. Describe the structure of atoms in terms of neutrons, protons, and electrons and the role of the atomic structure in determining chemical properties.
- b. Describe how the number and arrangement of atoms in a molecule determine a molecule's properties, including the types of bonds it makes with other molecules and its mass, and apply this to predictions about chemical reactions.
- c. Explain the essential roles of carbon and water in life processes.

d. Describe how light is emitted and absorbed by atoms' changing energy levels, and how the results can be used to identify a substance.

- e. Describe factors that affect the rate of chemical reactions (including concentration, pressure, temperature, and the presence of molecules that encourage interaction with other molecules.
- f. Apply an understanding of the factors that affect the rate of chemical reaction to predictions about the rate of chemical reactions.
- g. Describe nuclear reactions, including fusion and fission, and the energy they release.
- h. Describe the radioactive decay and half-life.
- i. Explain the relationship between kinetic and potential energy and apply the knowledge to solve problems.
- j. Describe how in energy transformations the total amount of energy remains the same, but because of inefficiencies (heat, sound, and vibration) useful energy is often lost through radiation or conduction.
- k. Apply an understanding of energy transformations to solve problems.
- Describe the relationship among heat, temperature, and pressure in terms of the actions of atoms, molecules, and ions.

Related Maine Learning Results

	D4.Force and Motion
	Students understand that the laws of force and motion are the
	same across the universe.
	 a. Describe the contribution of Newton to our understanding of
	force and motion, and give examples of and apply Newton's
	three laws of motion and his theory of gravitation.
	 b. Explain and apply the ideas of relative motion and frame of
	reference.
Related	c. Describe the relationship between electric and magnetic
Maine Learning	fields and forces, and give examples of how this relationship
Results	is used in modern technologies.
	d. Describe and apply characteristics of waves, including
	wavelength, frequency, and amplitude.
	e. Describe and apply an understanding of how waves interact
	with other waves and with materials including reflection,
	refraction, and absorption.
	f. Describe kinetic energy (the energy of motion), potential
	energy (dependent on relative position), and energy
	contained by a field (including electromagnetic waves) and
	apply these understandings to energy problems.
Sample	Lecture
Lessons	"Boiling is a Cooling Process Lab"
And	 Heat of fusion and heat of vaporization demonstration
Activities	■ 1, 4 - dichlorobenzene Lab
	 Soda Can Combined Gas Law demonstration
Sample	Matter Quizzes
Classroom	Chapter Tests
Assessment	Laboratory Reports
Methods	
	Publications:
	 Glencoe <u>Physical Science</u>
	 MARVEL Data bases*
Sample	 GALE Resource Data bases**
Resources	■ <u>Videos:</u>
	 Connections Series
	 The World of Chemistry