Essential Understandings	 Causation: Nothing "just happens". Everything is caused. Interrelatedness: Everything in the universe is connected to everything else in the universe. Dynamism: Everything is changing in some way all the time. Entropy: Change has direction. Generally, simple precedes complex. Generally, order changes toward disorder. Uniformitarianism: The way the universe works today is the way it worked yesterday and the way it will work tomorrow.
Essential Questions	 What is energy? How are work and energy related? How is energy conserved? What factors determine the amount of thermal energy in an object?
Essential Knowledge	 Energy can be neither created nor destroyed but can be changed from one form to another. Work is a transfer of energy through motion. All objects have thermal energy. Different objects absorb/release different amounts of energy.
Vocabulary	 <u>Terms</u>: energy, work, potential energy, kinetic energy, mechanical energy, thermal energy, heat, temperature, specific heat
Essential Skills	 Use appropriate formulas to calculate work and energy relationships (W = Fd ; E_P = mgh ; E_K = ½mv²) Determine the thermal energy of an object using E_T = Q = m ΔT C
Related Maine Learning Results	 <u>Science and Technology</u> B. The Skills and Traits of Scientific Inquiry and Technological Design B1.The Skills and Traits of Scientific Inquiry Students methodically plan, conduct, analyze data from, and communicate results of in-depth scientific investigations, including experiments guided by a testable hypothesis. a. Identify questions, concepts, and testable hypotheses that guide scientific investigations. b. Design and safely conduct methodical scientific investigations, including experiments with controls. c. Use statistics to summarize, describe, analyze, and interpret results. d. Formulate and revise scientific investigations using logic and evidence. e. Use a variety of tools and technologies to improve investigations and communications. f. Recognize and analyze alternative explanations and models using scientific criteria. g. Communicate and defend scientific ideas.

	D. The Physical Setting
Related Maine Learning Results	 D2. Earth Students describe and analyze the biological, physical, energy, and human influences that shape and alter Earth Systems. a. Describe and analyze the effect of solar radiation, ocean currents, and atmospheric conditions on the Earth's surface and the habitability of Earth. b. Describe Earth's internal energy sources and their role in plate tectonics. c. Describe and analyze the effects of biological and geophysical influences on the origin and changing nature of Earth Systems. d. Describe and analyze the effects of human influences on Earth Systems.

	D3.Matter and Energy
	Students describe the structure, behavior, and interactions of
	matter at the atomic level and the relationships between matter
	and energy.
	 Describe the structure of atoms in terms of neutrons,
	protons, and electrons and the role of the atomic structure in
	determining chemical properties.
	 Describe how the number and arrangement of atoms in a
	molecule determine a molecule's properties, including the
	types of bonds it makes with other molecules and its mass,
	and apply this to predictions about chemical reactions.
	c. Explain the essential roles of carbon and water in life
	processes.
	d. Describe how light is emitted and absorbed by atoms'
Related	changing energy levels, and how the results can be used to
Maine Learning	identify a substance.
Results	e. Describe factors that affect the rate of chemical reactions
	(including concentration, pressure, temperature, and the
	presence of molecules that encourage interaction with other
	molecules.
	f. Apply an understanding of the factors that affect the rate of
	chemical reaction to predictions about the rate of chemical
	reactions.
	g. Describe nuclear reactions, including fusion and fission, and
	the energy they release.
	h. Describe the radioactive decay and half-life.
	i. Explain the relationship between kinetic and potential
	energy and apply the knowledge to solve problems.
	j. Describe how in energy transformations the total amount of
	energy remains the same, but because of inefficiencies
	(heat, sound, and vibration) useful energy is often lost
	through radiation or conduction.
	k. Apply an understanding of energy transformations to solve
	problems.
	I. Describe the relationship among heat, temperature, and
	pressure in terms of the actions of atoms, molecules, and
	ions.

	D. The Physical Setting
	D4.Force and Motion
	Students understand that the laws of force and motion are the
	same across the universe.
	a. Describe the contribution of Newton to our understanding of
	force and motion, and give examples of and apply Newton's
	three laws of motion and his theory of gravitation.
	b. Explain and apply the ideas of relative motion and frame of
Related	reference.
Maine Learning	c. Describe the relationship between electric and magnetic
Results	fields and forces, and give examples of how this relationship
Roound	is used in modern technologies.
	d. Describe and apply characteristics of waves, including
	wavelength, frequency, and amplitude.
	e. Describe and apply an understanding of how waves interact
	with other waves and with materials including reflection,
	refraction, and absorption.
	f. Describe kinetic energy (the energy of motion), potential
	energy (dependent on relative position), and energy
	contained by a field (including electromagnetic waves) and
	apply these understandings to energy problems.
Sample	 Coke Can/Calorimeter Laboratory
Lessons	 Work and Power Stair Laboratory
And	 Rubber band (Elastic Potential Energy) Laboratory
Activities	 Specific Heat / Paraffin Wax Demonstration
	 Chapter Tests
Sample	Energy Quizzes
Classroom	 Laboratory Reports
Assessment	Lectures
Methods	 Demonstrations
	 Laboratory exercises
	Sharing circles
	<u>Publications:</u>
Correla	 Glencoe <u>Physical Science</u> MARXEL Data bases *
Sample	 MARVEL Data bases * CALE Baseuras Data bases **
Resources	 GALE Resource Data bases **
	 <u>Videos:</u> The Mechanical Universe
	 <u>Connections Series</u> <u>ESPN Sports Figures</u>
	\circ ESPIN Sports Figures