Essential Understandings	 Causation: Nothing "just happens". Everything is caused. Interrelatedness: Everything in the universe is connected to everything else in the universe. Dynamism: Everything is changing in some way all the time. Uniformitarianism: The way the universe works today is the way it worked yesterday and the way it will work tomorrow.
Essential Questions	 How can the idea of a system help us understand the lithosphere and our relationship with it? What is a system and how does one work? What is the lithosphere? What sub-systems are involved in the lithosphere and how are they thought to work? What components of the lithosphere do scientists study around the world and Maine? How is the world's population affected by lithospheric system systems? (i.e., why do we care about the lithosphere?) What remains unclear about the lithosphere and/or our relationships with it, and how might a systems-type lens help uncover the answers?
Essential Knowledge	 The world can be more thoroughly understood as one system with interrelated components. There is no such thing as a process "operating in a vacuum." Physics and chemistry concepts were not left behind in those courses; they are present in the world around us. The lithosphere plays a key role in ethical, philosophical, and economic debates. The lithosphere system follows the laws of conservation of mass, conservation of energy, and uniformitarianism (the present is the key to the past.
Vocabulary	 <u>Terms</u>: Lithosphere, asthenosphere, mesosphere, inner/outer core Density Systems components (steady state, reservoir, upper/lower boundaries, inputs/outputs, positive and negative feedbacks, open/closed system) Continental drift, tectonic plates, convergent and divergent plate boundaries Earthquakes, fault lines, volcanoes, hotspots, ring of fire The rock cycle (Igneous, sedimentary, and metamorphic rocks) Weathering (chemical and physical) and erosion
Essential Skills	 Draw a labeled, accurate cross-section of the lithosphere system, with inputs (subduction) and outputs (volcanism). Identify, distinguish, and name a formation environment for igneous, metamorphic, and sedimentary rock specimens.

	Science and Technology
	A. Unifying Themes
	A1. Systems
	Students apply an understanding of systems to explain and
	analyze man-made natural phenomena.
	 Analyze a system using the principles of boundaries,
	subsystems, inputs, outputs, feedback, or the system's
	relation to other systems and design solutions to a system
	problem.
	b. Explain and provide examples that illustrate how it may not
	always be possible to predict the impact of changing some
	part of a man-made or natural system.
	C. The Scientific and Technological Enterprise
	C1.Understandings of Inquiry
Related	Students describe key aspects of scientific investigations: that
Maine Learning	they are guided by scientific principles and knowledge, and that
Results	they are performed to test ideas, and that they are
	communicated and defended publicly.
	a. Describe how hypotheses and past and present knowledge
	guide and influence scientific investigations.
	b. Describe how scientists defend their evidence and
	explanations using logical arguments and verifiable results.
[D. The Physical Setting
	D2. Earth
	Students describe and analyze the biological, physical, energy,
	and human influences that shape and alter Earth Systems.
	a. Describe and analyze the effect of solar radiation, ocean
	currents, and atmospheric conditions on the Earth's surface
	and the habitability of Earth.
	b. Describe Earth's internal energy sources and their role in
	plate tectonics.
	c. Describe and analyze the effects of biological and
	geophysical influences on the origin and changing nature of
	Earth Systems.
	d. Describe and analyze the effects of human influences on
	Earth Systems.

	D3. Matter and Energy
	Students describe the structure, behavior, and interactions of
	matter at the atomic level and the relationship between matter
	and energy.
	a. Describe the structure of atoms in terms of neutrons,
	protons, and electrons and the role of the atomic structure in
	determining chemical properties.
	b. Describe how the number and arrangement of atoms in a
	molecule determine a molecule's properties, including the
	types of bonds it makes with other molecules and its mass,
	and apply this to predictions about chemical reactions.
	c. Explain the essential roles of carbon and water in life
	processes.
	d. Describe how light is emitted and absorbed by atoms'
	changing energy levels, and how the results can be used to
Related	identify a substance.
Maine Learning	e. Describe factors that affect the rate of chemical reactions
Results	(including concentration, pressure, temperature, and the
	presence of molecules that encourage interaction with other
	molecules).
	f. Apply an understanding of the factors that affect the rate of
	chemical reaction to predictions about the rate of chemical
	reactions.
	g. Describe nuclear reactions, including fusion and fission, and
	the energy they release.
	h. Describe radioactive decay and half-life.
	i. Explain the relationship between kinetic and potential
	energy and apply the knowledge to solve problems.
	j. Describe how in energy transformations the total amount of
	energy remains the same, but because of inefficiencies
	(heat, sound, and vibration) useful energy is often lost through radiation or conduction.
	k. Apply an understanding of energy transformations to solve
	problems.
	I. Describe the relationship among heat, temperature, and
	pressure in terms of the actions of atoms, molecules, and
	ions.
Sample	 Igneous rocks lab (identifying hand samples and formation
Lessons	environments)
And	 Diagram of Earth's interior
Activities	 Library Research Project (Topic: "What components of the
	lithosphere do scientists study around the world and in Maine?")
Sample	 Quizzes on class lectures
Classroom	 Laboratory and project grades

Assessment Methods	 Examination at the end of unit
Sample Resources	 <u>Publications</u>: "Laboratory Manual: Physical Geology," James H. Zumberge et al., Plummer/McGeary, 1996.
	 <u>Other Resources</u>: Science Resource Center (Library online database)