	 The physical world contains basic elements whose structure can be studied
	Matter is transformed in accordance with various chemical laws
Essontial	and principles
Lindorstandings	Energy is a fundamental part of physical and chemical changes
Understandings	 Energy is a fundamental part of physical and chemical changes. Heat is one of the fundamental forms of energy affecting change.
	 Heat is one of the fundamental forms of energy affecting change and order of motter in our universe.
	And order of matter in our universe.
	matter?
Essential	Where do we find mineral resources and how are they processed?
Questions	 What information do chemical equations convey about matter and
	its changes?
	How can chemists modify matter to make it more useful?
	 The periodic table contains patterns in the properties of elements.
	 Materials have different uses based on their properties.
Essential	 The law of conservation of matter is used for tracking atoms and
Knowledge	balancing chemical equations including oxidation-reduction.
	 The sources, properties, and processing methods of materials can
	be changed and altered.
	■ <u>Terms</u> :
	 physical/chemical properties, physical/chemical changes,
	combustion, luster, ductile, metals, nonmetals, metalloids,
	conductor, nonconductor, malleable, brittle, periodic table,
	atomic number, nucleus, mass number, isotopes, periods,
	periodic relationship, groups/families, alkali metal family,
	noble gas family, halogen family, atmosphere, hydrosphere,
Vocabulary	lithosphere, ore, minerals, ductility, activity series, reduction,
	oxidation, oxidation-reduction (redox) reaction,
	electrometallurgy, pyrometallurgy, hydrometallurgy, electron-
	dot (Lewis dot) structure, oxidizing agent, law of
	conservation of matter, balanced chemical equation,
	coefficients, formula unit, mole, molar mass, conversion
	lactor, percent composition, renewable and nonrenewable
	resources, allotropes, ceramics, plastics, alloy,
	superconductivity, semi-conductors, doping, coatings,
	electroplating, half-reaction, cathode, and the films.

	 Classify each chemical statement as describing either a
	chemical/physical property or chemical/physical change.
	 Produce graphs illustrating the periodic relationships of elemental
	properties.
	 Use the periodic table to predict the properties of elements.
	Relate the activity series of metals to the periodic table and
Essential	recognize a balanced chemical equation and balance if not.
Skills	 Link macroscopic properties to particulate structures.
	 Determine the conversions using molar ratios derived from
	coefficients in a chemical equation
	 Calculate the percent composition of some metal ores
	 Analyze the life cycle of conner and then discuss with classmates
	 Design a new half-dollar and shares the design with the class
	Science and Technology
	A Unifying Themes
	A1 Systems
	Students apply an understanding of systems to evaluate and
	analyze man made and natural phonomona
	Analyze man-made and matural phenomena.
	a. Analyze a system using the principles of boundaries,
Deleted	subsystems, inputs, outputs, recuback, or the systems
	relation to other systems and design solutions to a system
Results	b. Explain and provide examples that illustrate how it may not
	always be possible to predict the impact of changing some
	part of a man-made or natural system.
	A2.Models
	Students evaluate the effectiveness of a model by comparing its
	predications to actual observations from the physical setting,
	the living environment, and the technological world.
	A3.Constancy and Change
	Students identify and analyze examples of constancy and
	change that result from varying types and rates of change in
	physical, biological, and technical systems with and without
	counterbalances.

	B. The Skills and Traits of Scientific Inquiry and Technological Design
	BT. The Skills and Traits of Scientific Inquiry
	Students methodically plan, conduct, analyze data from, and
	communicate results of in-depth scientific investigations.
	including experiments guided by a testable hypothesis
	a Identify questions, concents, and testable hypotheses that
	quide scientific investigations.
	b. Design and safely conduct methodical scientific
	investigations, including experiments with controls.
Related	c. Use statistics to summarize, describe, analyze, and interpret
Maine Learning	results.
Results	d. Formulate and revise scientific investigations using logic and
	evidence.
	e. Use a variety of tools and technologies to improve
	investigations and communications.
	f. Recognize and analyze alternative explanations and models
	using scientific criteria.
	 Communicate and defend scientific ideas.
	C. The Scientific and Technological Enterprise
	C1.Understandings of Inquiry
	Students describe key aspects of scientific investigations: that
	they are guided by scientific principles and knowledge, and that
	they are performed to test ideas, and that they are
	approximate performed to test ideas, and that they are
	a. Describe now hypotheses and past and present knowledge
	guide and influence scientific investigations.
	 b. Describe how scientists defend their evidence and
	explanations using logical arguments and verifiable results.

	D The Physical Setting
	D3 Matter and Energy
	Students describe the structure behavior and interactions of
	matter at the atomic level and the relationships between matter
	and energy
	and energy:
	a. Describe the structure of atoms in terms of heutrons,
	determining chemical properties.
	b. Describe how the number and arrangement of atoms in a
	molecule determine a molecule's properties, including the
Related Maine Learning Results	types of bonds it makes with other molecules and its mass.
	and apply this to predictions about chemical reactions.
	c. Explain the essential roles of carbon and water in life
	processes.
	d. Describe how light is emitted and absorbed by atoms'
	changing energy levels, and how the results can be used to
	identify a substance.
	e. Describe factors that affect the rate of chemical reactions
	(including concentration, pressure, temperature, and the
	presence of molecules that encourage interaction with other
	molecules.
	 Apply an understanding of the factors that affect the rate of
	chemical reaction to predictions about the rate of chemical
	Teactions.
	the energy they release.
	h. Describe the radioactive decay and half-life.
	i. Explain the relationship between kinetic and potential
	energy and apply the knowledge to solve problems.
	j. Describe how in energy transformations the total amount of
	energy remains the same, but because of inefficiencies
	(heat, sound, and vibration) useful energy is often lost
	through radiation or conduction.
	k. Apply an understanding of energy transformations to solve
	problems.
	I. Describe the relationship among heat, temperature, and
	pressure in terms of the actions of atoms, molecules, and
	ions.

	E. The Living Environment
	E2.Ecosystems
	Students describe and analyze the interactions, cycles, and
	factors that affect short-term and long-term ecosystem stability
	and change.
	a. Explain why ecosystems can be reasonably stable over
	hundreds or thousands of years, even though populations
Related	mav fluctuate.
Maine Learning	b. Describe dynamic equilibrium in ecosystems and factors that
Results	can, in the long run, lead to change in the normal pattern of
	cyclic fluctuations and apply that knowledge to actual
	situations
	c. Explain the concept of carrying capacity and list factors that
	determine the amount of life that any environment can
	support.
	d. Describe the critical role of photosynthesis and how energy
	and the chemical elements that make up molecules are
	transformed in ecosystems and obey basic conversation
	laws.
	 Classify statements is writing as describing either a
	physical/chemical property or physical/chemical change.
Sample	In a laboratory experiment explore several properties of seven
Lessons	elements to decide whether each element is a metal, nonmetal, or
And	metalloid.
Activities	 Group 20 element data cards and then graph the data to determine
	the periodic variations in properties.
	 Design a new fifty cent currency and present the coin to the class
	for judging.
	 Sections A, B, C, and D Quizzes followed by tests after each
Sample	section
Classroom	 Summary Questions for each section
Assessment	 Laboratory experiments for each section
Methods	 Skill problems for various parts of each section
	<u>Publications:</u>
	 <u>Chemistry in the Community</u>, Chemcom, 5th edition textbook
Sample	and ancillaries
Resources	Videos:
	 World of Chemistry series
	 <u>Planet Earth</u> series