Essential Understandings	 Atoms and molecules compose living and nonliving things and recycle through the biosphere. Energy flows through ecosystems in one direction from photosynthetic or chemosynthetic organisms to herbivores to carnivores to decomposers. Organisms cooperate and compete in ecosystems. Humans modify ecosystems due to technology, growth, and consumption. Living organisms have the ability to produce populations of infinite size, but the environment and resources are finite.
Essential Questions	 How do atoms and molecules move through the biosphere? How does energy flow through an ecosystem? How are organisms related to each other and to their environment? How do humans impact the biosphere? How do finite resources impact population growth?
Essential Knowledge	 Matter cycles through the biosphere. Energy is utilized in different forms throughout the biosphere. Organisms cooperate and compete in the ecosystem. Human activities impact both living and nonliving factors in an ecosystem. Populations can grow unchecked unless limited by resources.
Vocabulary	 <u>Terms</u>: biogeochemical cycles, levels of organization, atoms, molecules, photosynthesis, chemosynthesis, autotroph/ producers, heterotroph/carnivore, herbivores, carnivores, omnivores, food chain, food web, trophic level, niche, habitat, ecological pyramids, land biomes, aquatic ecosystems, symbiotic relationships, predator/prey relationships, logistic growth, exponential growth, density dependent factor, density independent factor, demography, age-structure diagrams, sustainable use, biodiversity, renewable resources, nonrenewable resources, primary and secondary succession, conservation biology
Essential Skills	 Construct a food web. Identify symbiotic relationships. Characterize biomes. Relate topics to current events.

	Science
	B. The Skills and Traits of Scientific Inquiry and Technological Design
	B1 Skills and Traits of Scientific Inquiry
	Studente methodically plan, conduct, analyze data from, and
	Students methodically plan, conduct, analyze data from, and
	communicate results of in-depth scientific investigations,
	including experiments guided by a testable hypothesis.
	a. Identify questions, concepts, and testable hypotheses that
	guide scientific investigations.
	 b. Design and safely conduct methodical scientific
	investigations, including experiments with controls.
	c. Use statistics to summarize, describe, analyze, and interpret
	results.
	d. Formulate and revise scientific investigations and models
	using logic and evidence.
	e. Use a variety of tools and technologies to improve
Related	investigations and communications.
Maine Learning	f. Recognize and analyze alternative explanations and models
Results	using scientific criteria.
	 Communicate and defend scientific ideas.
	C. The Scientific and Technological Enterprise
	C1 Understandings of Inquiry
	Students describe key aspects of scientific investigations: that
	they are guided by scientific principles and knowledge that they
	are performed to test ideas, and that they are communicated
	and defended publicly
	and detended publicly.
	a. Describe now hypotheses and past and present knowledge
	guide and influence scientific investigations.
	b. Describe now scientists detend their evidence and
	explanations using logical argument and verifiable results.
	C2.Understandings About Science and Technology
	Students explain how the relationship between scientific inquiry
	and technological design influences the advancement of ideas,
	products, and systems.
	c. Provide examples that illustrate how technological solutions
	to problems sometimes lead to new problems or new fields
	of inquiry.

	D. The Physical Setting
	D3.Matter and Energy
	Students describe the structure, behavior, and interactions of
	matter at the atomic level and the relationship between matter
	and energy.
	 Describe the structure of atoms in terms of neutrons, protons, and electrons and the role of the atomic structure in determining chemical properties.
Related	 b. Describe how the number and arrangement of atoms in a molecule determine a molecule's properties, including the types of bonds it makes with other molecules and its mass, and apply this to predictions about chemical reactions
Maine Learning	c Explain the essential roles of carbon and water in life
Results	
Nesuits	d Describe how light is emitted and absorbed by atoms'
	changing energy levels, and how the results can be used to identify a substance
	e. Describe factors that affect the rate of chemical reactions
	(including concentration, pressure, temperature, and the
	presence of molecules that encourage interaction with other molecules).
	 f. Apply an understanding of the factors that affect the rate of chemical reaction to predictions about the rate of chemical reactions
	g. Describe nuclear reactions, including fusion and fission, and
	the energy they release.
	Describe radioactive decay and half-life. Evolution the relationship between kinetic and potential
	n. Explain the relationship between kinetic and potential
	Describe the relationship among heat temperature, and
	pressure in terms of the actions of atoms, molecules, and
	IONS.

	E. The Living Environment
	E2.Ecosystems
	Students describe and analyze the interactions, cycles, and
	factors that affect short-term and long-term ecosystem stability
	and change.
	a. Explain why ecosystems can be reasonably stable over
	hundreds or thousands of years, even though populations
	may fluctuate.
	b. Describe dynamic equilibrium in ecosystems and factors that
	can, in the long run, lead to change in the normal pattern of
	cyclic fluctuations and apply that knowledge to actual
	situations.
	c. Explain the concept of carrying capacity and list factors that
	determine the amount of life that any environment can
Related	support.
Maine Learning	d. Describe the critical role of photosynthesis and how energy
Results	and the chemical elements that make up molecules are
	transformed in ecosystems and obey basic conservation
	laws.
	E5.Evolution
	Students describe the interactions between and among
	species, populations, and environments that lead to natural
	selection and evolution.
	a. Describe the premise of biological evolution, citing evidence
	from the fossil record and evidence based on the
	observation of similarities within the diversity of existing
	organisms.
	b. Describe the origins of life and how the concept of natural
	selection provides a mechanism for evolution that can be
	advantageous or disadvantageous to the next generation.
	c. Explain why some organisms may have characteristics that
	have no apparent survival or reproduction advantage.
	d. Relate structural and behavioral adaptations of an organism
	to its survival in the environment.

	 Build a food web
Sample	 Complete a Biome Web Quest
Lessons	 Construct Population Growth Graphs
and	 Water Quality Tests
Activities	 Transect a small ecosystem
	 Biodiversity of Pond Water
Sample	Quiz
Classroom	 Chapter Test
Assessment	 Lab Reports
Methods	
	Publications:
Sample	 <u>Biology</u> – Kenneth Miller and Josephine Levine
Resources	Videos:
	 <u>Cycle of Life</u> videos