Essential Understandings	 There are multiple types of muscle cells. Muscle fiber contraction results from the sliding movement of actin and myosin filaments. Muscles have specific origins and insertions that allow for all movements of the body.
Essential Questions	 What are the major muscles of the arms, legs, torso, and head? How is movement created in the body? What is the process of muscles obtaining the energy they need? What are the different parts of a skeletal muscle?
Essential Knowledge	 There are three types of muscle: skeletal, cardiac, and smooth. The proteins Actin and Myosin cause striations in skeletal muscles called sarcomeres. Motor neurons control muscle contractions. Energy is needed for muscle contraction and obtained through aerobic and anaerobic respiration. Repair of muscle fibers increases muscle mass. Smooth muscles line many internal organs and are controlled involuntarily. There are major groupings of muscles in the arms, legs, torso, and head.
Vocabulary	 <u>Terms</u>: Motor unit, Myofibril, Myofilament, Neuromuscular Junction, Sarcolemma, Sarcomere, T tubules, Tetanus, Fascia, Aponeuroses, Myosin, Actin, Neurotransmitter, Synapse, Motor End Plate, Synaptic Cleft, Sliding Filament Model, Acetylcholine, Acetylcholinesterase, Lactic Acid, Aerobic Respiration, Anaerobic Respiration, ATP, Threshold Stimulus, Tone, Muscular Dystrophy, Insertion, Origin
Essential Skills	 Identify the major muscles of the Arm, Leg, Torso, and Head. List the series of steps in muscle contraction and explain how they move body parts. List the generalized functions of each major type of muscle. Describe the sliding filament theory. Draw a neuromuscular junction. Explain the difference between aerobic respiration and anaerobic respiration.

	Science
	A. Unifying Themes
	A1.Systems
	Students apply an understanding of systems to explain and
	analyze man-made and natural phenomena.
	a. Analyze a system using the principles of boundaries,
	subsystems, inputs, outputs, feedback, or the system's
	relation to other systems and design solutions to a system
	problem.
	b. Explain and provide examples that illustrate how it may not
	always be possible to predict the impact of changing some
	part of a man-made or natural system.
	A3. Constancy and Change
	Students identify and analyze examples of constancy and change
	that result from varying types and rates of change in physical,
	biological, and technological systems with and without
	Counterbalances. R. The Skille and Traite of Scientific Inquiry and Technological Design
	B. The Skills and Traits of Scientific Inquiry and Technological Design
Related	Students methodically plan, conduct, analyze data from, and
Maine Learning	communicate results of in-depth scientific investigations
Results	including experiments guided by a testable hypothesis.
	a. Identify questions, concepts, and testable hypotheses that
	guide scientific investigations.
	b. Design and safely conduct methodical scientific
	investigations, including experiments with controls.
	c. Use statistics to summarize, describe, analyze, and interpret
	results.
	d. Formulate and revise scientific investigations and models
	using logic and evidence.
	e. Use a variety of tools and technologies to improve
	investigations and communications.
	f. Recognize and analyze alternative explanations and models
	using scientific criteria.
	g. Communicate and defend scientific ideas.
	B2.5kills and Trails of Technological Design
	Students use a systematic process, tools and techniques, and a
	that meets new needs or improves existing designs
	a Identify new problems or a current design in need of
	improvement
	b. Generate alternative design solutions
	c. Select the design that best meets established criteria
	d. Use models and simulations as prototypes in the design
	planning process.
	e. Implement the proposed design solution.

Science: Human Anatomy	
Unit 3: The Muscular System	
	f. Evaluate the solution to a design problem and the consequences of that solution.
	 g. Present the problem, design process, and solution to a design problem including models, diagrams, and demonstrations.
	C. The Scientific and Technological Enterprise
	C1.Understandings of Inquiry
	Students describe key aspects of scientific investigations: that they are guided by scientific principles and knowledge, that they are performed to test ideas, and that they are communicated and defended publicly.
	 Describe how hypotheses and past and present knowledge guide and influence scientific investigations.
	 Describe how scientists defend their evidence and explanations using logical argument and verifiable results.

	C2.Understanings About Science and Technology
	Students explain how the relationship between scientific inquiry
	and technological design influences the advancement of ideas.
	products, and systems.
	a. Provide an example that shows how science advances with
	the introduction of new technologies and how solving
	technological problems often impacts new scientific
	knowledge.
	b. Provide examples of how creativity, imagination, and a good
	knowledge base are required to advance scientific ideas and
	technological design.
	C3.Science, Technology, and Society
	Students describe the role of science and technology in
	creating and solving contemporary issues and challenges.
	b. Explain how ethical, societal, political, economic, and
	cultural factors influence personal health, safety, and the quality
	of the environment.
	c. Explain how ethical, societal, political, economic, religious,
Related	and cultural factors influence the development and use of
Maine Learning	science and technology.
Results	C4.History and Nature of Science
	Students describe the human dimensions and traditions of
	science, the nature of scientific knowledge, and historical
	episodes in science that impacted science and society.
	a. Describe the ethical traditions in science including peer
	review, truthful reporting, and making results public.
	b. Select and describe one of the major episodes in the history
	of science including now the scientific knowledge changed
	over time and any important effects on science and society.
	c. Give examples that show how societal, cultural, and
	constists
	d Provide examples of criteria that distinguish scientific
	explanations from pseudoscientific ones
	D The Physical Setting
	D2 Farth
	Students describe and analyze the biological, physical, energy
	and human influences that shape and alter Earth Systems.
	c. Describe and analyze the effects of biological and
	geophysical influences on the origin and changing nature of
	Earth Systems.
	d. Describe and analyze the effects of human influences on
	Earth Systems.
	D3.Matter and Energy
	Students describe the structure, behavior, and interactions of
	matter at the atomic level and the relationship between matter

and energy.
 Describe radioactive decay and half-life.

	E. The Living Environment
	E1.Biodiversity
	Students describe and analyze the evidence for relatedness
	among and within diverse populations of organisms and the
	importance of biodiversity.
	a. Explain how the variation in structure and behavior of a
	population of organisms may influence the likelihood that
	some members of the species will have adaptations that
	allow them to survive in a changing environment.
	b. Describe the role of DNA sequences in determining the
	degree of kinship among organisms and the identification of
	species.
	c. Analyze the relatedness among organisms using structural
	d Analyze the offects of changes in biodiversity and prodict
	u. Analyze the effects of changes in biodiversity and predict
	F2 Ecosystems
	Students describe and analyze the interactions, cycles, and
Related	factors that affect short-term and long-term ecosystem stability
Maine Learning	and change.
Results	a. Explain why ecosystems can be reasonably stable over
	hundreds or thousands of years, even though populations
	may fluctuate.
	b. Describe dynamic equilibrium in ecosystems and factors that
	can, in the long run, lead to change in the normal pattern of
	cyclic fluctuations and apply that knowledge to actual
	Situations.
	E3.0611S Students describe structure and function of colls at the
	intracellular and molecular level including differentiation to form
	systems, interactions between cells and their environment, and
	the impact of cellular processes and changes on individuals
	a. Describe the similarities and differences in the basic
	functions of cell membranes and of the specialized parts
	within cells that allow them to transport materials, capture
	and release energy, build proteins, dispose of waste,
	communicate, and move.
	 b. Describe the relationship among DNA, protein molecules,
	and amino acids in carrying out the work of cells and how this
	is similar among all organisms.
	c. Describe the interactions that lead to cell growth and division
	(mitosis) and allow new cells to carry the same information as
	the original cell (meiosis).
	u. Describe ways in which cells can malfunction and put an
	Organism at risk.
	e. Describe the role of regulation and the processes that

Science: Human Anatomy	
Unit 3: The Muscular System	
	maintain an internal environment amidst changes in the external environment. f. Describe the process of metabolism that allows a few key biomolecules to provide cells with necessary materials to
	perform their functions.
	 g. Describe how cells differentiate to form specialized systems for carrying out life functions.
	E4.Heredity and Reproduction
	Students examine the role of DNA in transferring traits from generation to generation, in differentiating cells, and in evolving new species.
	 c. Explain how the instructions in DNA that lead to cell differentiation result in varied cell functions in the organism and DNA.
	d. Describe the possible causes and effects of gene mutations.

	E5.Evolution
	Students describe the interactions between and among
	species, populations, and environments that lead to natural
	selection and evolution.
	a. Describe the premise of biological evolution, citing evidence
	from the fossil record and evidence based on the
Related	observation of similarities within the diversity of existing
Maine Learning	organisms.
Results	b. Describe the origins of life and how the concept of natural
	selection provides a mechanism for evolution that can be
	advantageous or disadvantageous to the next generation.
	c. Explain why some organisms may have characteristics that
	have no apparent survival or reproduction advantage.
	d. Relate structural and behavioral adaptations of an organism
	to its survival in the environment.
Sample	 Observe different muscle types under a microscope
Lessons	 Chicken leg dissection
and	 Build a 3D model of the sliding filament theory
Activities	 Act out aerobic vs anaerobic respiration
Sample	 Quiz
Classroom	 Chapter Test
Assessment	 Worksheets
Methods	 Labs
	Publications:
	 <u>Biology</u> – Kenneth Miller and Josephine Levine
	 Biology the Dynamics of Life – Glencoe Internet Resources
Sample	 <u>Modern Biology</u>-Holt, Rinehart, and Winston
Resources	Videos:
	 National Geographic: Inside the Living Body
	 National Geographic: The Incredible Human Machine
	 Other Resources
	 Lab Supplies