Essential Understandings	 Causation: Nothing "just happens". Everything is caused. Interrelatedness: Everything in the universe is connected to everything else in the universe. Dynamism: Everything is changing in some way all the time. Entropy: Change has direction. Generally, simple precedes complex. Generally, order changes toward disorder. Uniformitarianism: The way the universe works today is the way it worked yesterday and the way it will work tomorrow.
Essential Questions	 What different models of the atom have been developed? What subatomic particles compose the atom? What are the relative locations of the subatomic particles in an atom? What characteristics typify the various subatomic particles? How do the subatomic particles interact?
Essential Knowledge	 Protons determine elemental identity. The nucleus occupies a very small portion of an atom's volume, but possesses the vast majority of the atom's mass. Element properties repeat periodically based on the arrangement of their electrons. Energy levels consist of electrons subdivided into subshells. Strong and weak nuclear forces hold protons and neutrons together in the nucleus. As scientists gather new data new models of the atom are developed.
Vocabulary	 <u>Terms</u>: atom, nuclear region (nucleus), electron cloud region, valence, subatomic particle, proton, neutron, electron, quark, atomic number, mass number, atomic weight (average atomic mass), isotope, periodicity, strong nuclear force, weak nuclear force
Essential Skills	 Use the Periodic Table to retrieve the Atomic Number, Average Atomic Mass, Chemical Symbol and valence electrons of an element. Use the Periodic Table to identify the periodic characteristics of elements. Describe basic characteristics of the subatomic particles. Describe at least two models of the atom. Diagram an element's electron configuration based on subshells. Draw Lewis-dot diagrams based upon an element's location on the periodic table.
Related Maine Learning Results	Science and Technology A. Unifying Themes A2.Models Students evaluate the effectiveness of a model by comparing its

predications to actual observations from the physical setting,
the living environment, and the technological world.
B. The Skills and Traits of Scientific Inquiry and Technological Design
B1.The Skills and Traits of Scientific Inquiry
Students methodically plan, conduct, analyze data from, and
communicate results of in-depth scientific investigations,
including experiments guided by a testable hypothesis.
 Identify questions, concepts, and testable hypotheses that
guide scientific investigations.
b. Design and safely conduct methodical scientific
investigations, including experiments with controls.
 Use statistics to summarize, describe, analyze, and interpret results.
d. Formulate and revise scientific investigations using logic and
evidence.
 Use a variety of tools and technologies to improve
investigations and communications.
f. Recognize and analyze alternative explanations and models
using scientific criteria.
g. Communicate and defend scientific ideas.
C. The Scientific and Technological Enterprise
•
C2.Understandihngs About Science and Technology
Students explain how the relationship between scientific inquiry
and technological design influences the advancement of ideas,
products, and systems.
 Provide an example that shows how science advances with
the introduction of new technologies and how solving
technological problems impacts new scientific knowledge.
b. Provide examples of how creativity, imagination, and a good
knowledge base are required to advance scientific ideas and
technological design.
c. Provide examples that illustrate how technological solutions
to problems sometimes lead to new problems of new fields
of inquiry.
C4.History and nature of Science
Students describe the human dimensions and traditions of
science, the nature of scientific knowledge, and historical
episodes in science that impacted science and society.
a. Describe and provide examples of the ethical traditions in
science including peer review, truthful reporting, and making
results public.
b. Select and describe one of the major episodes in the history
of science including how the scientific knowledge changed
over time and any important effects on science and society.
c. Give examples that show how societal, cultural, and

	Unit 7: Atomic Structure
	personal beliefs and ways of viewing the worlds can bias scientists.
	d. Provide examples of criteria that distinguish scientific
	explanations from pseudoscientific ones.
	D. The Physical Setting
	D3.Matter and Energy
	Students describe the structure, behavior, and interactions of
	matter at the atomic level and the relationships between matter
	and energy.
	a. Describe the structure of atoms in terms of neutrons,
	protons, and electrons and the role of the atomic structure in
	determining chemical properties.
	b. Describe how the number and arrangement of atoms in a
	molecule determine a molecule's properties, including the types of bonds it makes with other molecules and its mass,
	and apply this to predictions about chemical reactions.
	c. Explain the essential roles of carbon and water in life
	processes.
	d. Describe how light is emitted and absorbed by atoms'
	changing energy levels, and how the results can be used to
	identify a substance.
	e. Describe factors that affect the rate of chemical reactions
	(including concentration, pressure, temperature, and the
	presence of molecules that encourage interaction with other molecules.
	f. Apply an understanding of the factors that affect the rate of
	chemical reaction to predictions about the rate of chemical
	reactions.
	g. Describe nuclear reactions, including fusion and fission, and
	the energy they release.
	 Describe the radioactive decay and half-life.
	i. Explain the relationship between kinetic and potential
	energy and apply the knowledge to solve problems.
	j. Describe how in energy transformations the total amount of
	energy remains the same, but because of inefficiencies
	(heat, sound, and vibration) useful energy is often lost through radiation or conduction.
	k. Apply an understanding of energy transformations to solve
	problems.
	Describe the relationship among heat, temperature, and pressure in
	terms of the actions of atoms, molecules, and ions.
Sample	Lecture
Lessons	 Diagramming electron configurations
And	 Grouping misc. items (development of periodic table)
Activities	 Flame tests

	 Nuclear worksheets 	
	 History of the atom 	
Sample	 Quizzes 	
Classroom	 Chapter tests 	
Assessment	 Laboratory experiments and reports 	
Methods	 Formative classroom assessments 	
	 Portfolio Project (science content and literacy) 	
	<u>Publications:</u>	
	 Glencoe <u>Physical Science</u> 	
Sample	 MARVEL Data bases* 	
Resources	 GALE Resource Data bases** 	
	Audiovisual:	
	 Multiple online interactive sites 	
	 Video: <u>Connections Series</u> 	
	 Video: <u>The World of Chemistry</u> 	