	Causation: Nothing "just happens" Everything is caused			
	daddion. Itoming just happone . Everything is caucou.			
	 Interrelatedness: Everything in the universe is connected to 			
	everything else in the universe.			
Essential	Dynamism: Everything is changing in some way all the time.			
Understandings	Entropy: Change has direction. Generally, simple precedes			
	complex. Generally, order changes toward disorder.			
	Uniformitarianism: The way the universe works today is the way it			
	worked yesterday and the way it will work tomorrow.			
	What is energy?			
Essential	How are work and energy related?			
Questions	 How are work and energy related? How is energy conserved? 			
4400110110	 What factors determine the amount of thermal energy in an object? 			
	Energy can be neither created nor destroyed but can be changed			
Essential	, , , , , , , , , , , , , , , , , , ,			
	from one form to another.			
Knowledge	Work is a transfer of energy through motion.			
	Simple machines transfer energy/work.			
	Compound machines are two or more simple machines combined.			
	Efficiency is work out divided by work in.			
	 All objects have thermal energy. 			
	 Different objects absorb/release different amounts of energy. 			
	 Positive heat values represent heat gained, and negative heat 			
	values represent heat lost.			
	■ <u>Terms</u> :			
Vocabulary	o energy, work, potential energy, kinetic energy, mechanical			
	energy, thermal energy, heat, temperature, specific heat,			
	machine, mechanical advantage, efficiency			
	 Use appropriate formulas to calculate work and energy 			
Essential	relationships (W = Fd; E_P = mgh; E_K = ½mv²)			
Skills	• Determine the thermal energy of an object using $E_T = Q = m \Delta T C$			
OKIIIS	 Determine the thermal energy of all object using E1 = Q = m Z1 o Determine both positive and negative heat values based upon 			
	information provided.			
	·			
	Calculate international data that good of chilple internities.			
	Science and Technology B. The Skills and Traits of Scientific Inquiry and Technological Design			
	B. The Skills and Traits of Scientific Inquiry and Technological Design			
	B1.The Skills and Traits of Scientific Inquiry			
	Students methodically plan, conduct, analyze data from, and			
	communicate results of in-depth scientific investigations,			
	including experiments guided by a testable hypothesis.			
	a. Identify questions, concepts, and testable hypotheses that			
Related	guide scientific investigations.			
Maine Learning	b. Design and safely conduct methodical scientific			
Results	investigations, including experiments with controls.			
	c. Use statistics to summarize, describe, analyze, and interpret			
	results.			
	d. Formulate and revise scientific investigations using logic and			
	and the second second second second leader and second second leader and			

Unit 4: Energy					
	evidence.				
	e. Use a variety of tools and technologies to improve				
	investigations and communications.				
	f. Recognize and analyze alternative explanations and models				
	using scientific criteria.				
	g. Communicate and defend scientific ideas.				
	D. The Physical Setting				
	D2.Earth				
	Students describe and analyze the biological, physical, energy,				
	and human influences that shape and alter Earth Systems.				
	a. Describe and analyze the effect of solar radiation, ocean				
Related	currents, and atmospheric conditions on the Earth's surface				
Maine Learning	and the habitability of Earth.				
Results	b. Describe Earth's internal energy sources and their role in				
	plate tectonics.				
	c. Describe and analyze the effects of biological and				
	geophysical influences on the origin and changing nature of				
	Earth Systems.				
	d. Describe and analyze the effects of human influences on				
	Earth Systems.				
	D3.Matter and Energy				
	Students describe the structure, behavior, and interactions of				
	matter at the atomic level and the relationships between matter				
	and energy.				
	a. Describe the structure of atoms in terms of neutrons,				
	·				
	protons, and electrons and the role of the atomic structure in				
	determining chemical properties.				
	b. Describe how the number and arrangement of atoms in a				
	molecule determine a molecule's properties, including the				
	types of bonds it makes with other molecules and its mass,				
and apply this to predictions about chemical reac					
c. Explain the essential roles of carbon and water in life					
	processes.				
	d. Describe how light is emitted and absorbed by atoms'				
	changing energy levels, and how the results can be used to				
	identify a substance.				
	e. Describe factors that affect the rate of chemical reactions				
	(including concentration, pressure, temperature, and the				
	presence of molecules that encourage interaction with other				
	molecules.				
	f. Apply an understanding of the factors that affect the rate of				
	chemical reaction to predictions about the rate of chemical				
	reactions.				
	g. Describe nuclear reactions, including fusion and fission, and				
	the energy they release.				
	the energy they release.				

	Unit 4. Energy			
	h. Describe the radioactive decay and half-life.			
	 Explain the relationship between kinetic and potential 			
	energy and apply the knowledge to solve problems.			
	j. Describe how in energy transformations the total amount of			
	energy remains the same, but because of inefficiencies			
	(heat, sound, and vibration) useful energy is often lost			
	through radiation or conduction.			
	k. Apply an understanding of energy transformations to solve			
	problems.			
	•			
	pressure in terms of the actions of atoms, molecules, and			
	ions.			
	D. The Physical Setting			
	D4.Force and Motion			
	Students understand that the laws of force and motion are the			
	same across the universe.			
	 a. Describe the contribution of Newton to our understanding of force and motion, and give examples of and apply Newton's 			
	three laws of motion and his theory of gravitation.			
	 Explain and apply the ideas of relative motion and frame of reference. 			
	c. Describe the relationship between electric and magnetic			
	fields and forces, and give examples of how this relationship			
	is used in modern technologies.			
	d. Describe and apply characteristics of waves, including			
	1			
	wavelength, frequency, and amplitude.			
	e. Describe and apply an understanding of how waves interact			
	with other waves and with materials including reflection,			
	refraction, and absorption.			
	f. Describe kinetic energy (the energy of motion), potential			
	energy (dependent on relative position), and energy			
	contained by a field (including electromagnetic waves) and			
0	apply these understandings to energy problems.			
Sample	Coke Can/Calorimeter Laboratory			
Lessons	 Work and Power Stair Laboratory 			
And	 Rubber band (Elastic Potential Energy) Laboratory 			
Activities	 Specific Heat / Paraffin Wax Demonstration 			
	 Design a Rube-Goldberg machine calculating total mechanical 			
	advantage.			
	Chapter Tests			
Sample	 Energy Quizzes 			
Classroom	 Laboratory Reports 			
Assessment	 Laboratory exercises 			
Methods	 Portfolio Project (science content and literacy) 			

	Publications:	
	 Glencoe <u>Physical Science</u> 	
Sample	 MARVEL Data bases * 	
Resources	 GALE Resource Data bases ** 	
	Audiovisual:	
	 Multiple online interactive sites 	
	 Video: <u>The Mechanical Universe</u> 	
	 Video: <u>The Connections Series</u> 	