Science Honors Geophysical Science Unit 2: Motion

	Causation: Nothing "just happens". Everything is caused.
	Interrelatedness: Everything in the universe is connected to
	everything else in the universe.
Essential	 Dynamism: Everything is changing in some way all the time.
Understandings	 Entropy: Change has direction. Generally, simple precedes
	complex. Generally, order changes toward disorder.
	 Uniformitarianism: The way the universe works today is the way it
	worked yesterday and the way it will work tomorrow.
	What are the quantitative and qualitative similarities and
	differences among speed, velocity and acceleration?
	 How does the slope of a position/time graph represent the motion
Essential	of an object?
Questions	 How does the slope of a position/time graph predict the motion of
Questions	an object?
	What does the slope of a velocity/time curve represent?
	 What are the ideas of relative motion and frames of reference?
	 What are gravitational and inertial frames of reference?
	 How does inertia relate to the change in motion of an object?
	Motion is measured relative to gravitational or inertial frames if
	reference.
Essential	
	Motion to the change of position.
Knowledge	Average speed is the ratio of distance traveled to the time elapsed.
	 Acceleration is the rate at which velocity changes. Inertia is the amount an object resists changes to its current
	 Inertia is the amount an object resists changes to its current motion.
	Mass is the measure of the object's inertia. Terms:
Vessbulery	Terrio.
Vocabulary	o constant speed, average speed, instantaneous speed,
	velocity, acceleration, inertia, mass, frame of reference,
	displacement, gravitational frame of reference, inertial frame of reference.
Essential	 Use mathematics to calculate velocity, acceleration, time and distance.
Skills	Use mathematics to analyze motion to realize the relationships
	among distance, velocity and acceleration.
	Interpret the slopes on motion graphs. Science and Technology
	Science and Technology A Unifying Thomas
	A. Unifying Themes
	A1. Systems Students apply an understanding of systems to explain and
Doloted	Students apply an understanding of systems to explain and
Related	analyze man-made and natural phenomena.
Maine Learning	a. Analyze a system using the principles of boundaries,
Results	subsystems, inputs, outputs, feedback, or the system's
	relation to other systems and design solutions to a system

Science Honors Geophysical Science Unit 2: Motion

problem.

b. Explain and provide examples that illustrate how it may not always be possible to predict the impact of changing some part of a man-made or natural system.

A2.Models

Students evaluate the effectiveness of a model by comparing its predications to actual observations from the physical setting, the living environment, and the technological world.

B. The Skills and Traits of Scientific Inquiry and Technological Design B1. The Skills and Traits of Scientific Inquiry

Students methodically plan, conduct, analyze data from, and communicate results of in-depth scientific investigations, including experiments guided by a testable hypothesis.

- a. Identify questions, concepts, and testable hypotheses that guide scientific investigations.
- b. Design and safely conduct methodical scientific investigations, including experiments with controls.
- c. Use statistics to summarize, describe, analyze, and interpret results.
- d. Formulate and revise scientific investigations using logic and evidence.
- e. Use a variety of tools and technologies to improve investigations and communications.
- f. Recognize and analyze alternative explanations and models using scientific criteria.
- g. Communicate and defend scientific ideas.

D. The Physical Setting

D4.Force and Motion

Students understand that the laws of force and motion are the same across the universe.

- a. Describe the contribution of Newton to our understanding of force and motion, and give examples of and apply Newton's three laws of motion and his theory of gravitation.
- b. Explain and apply the ideas of relative motion and frame of reference.
- c. Describe the relationship between electric and magnetic fields and forces, and give examples of how this relationship is used in modern technologies.
- d. Describe and apply characteristics of waves, including wavelength, frequency, and amplitude.
- e. Describe and apply an understanding of how waves interact with other waves and with materials including reflection, refraction, and absorption.
- f. Describe kinetic energy (the energy of motion), potential energy (dependent on relative position), and energy

Brunswick School Department: Grade 9

Science Honors Geophysical Science Unit 2: Motion

	contained by a field (including electromagnetic waves) and apply these understandings to energy problems.
Sample	 Word problem worksheets
Lessons	 Motion Labs, i.e., constant velocity, acceleration
And	Lectures
Activities	 Motion demonstrations
	Motion Videos
Sample	Chapter Tests
Classroom	 Motion Quizzes
Assessment	 Laboratory Reports
Methods	 Portfolio Project (science content and literacy)
	Publications:
	 Glencoe <u>Physical Science</u>
Sample	MARVEL Data bases *
Resources	 GALE Resource Data bases **
	Audiovisual:
	 Multiple online interactive sites
	 Video: <u>The Mechanical Universe</u>
	 Video: ESPN Sports Figures