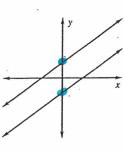
Solve Special Types of **Linear Systems**

· Identify the number of solutions of a linear system.

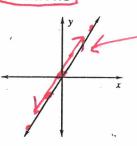

GRAPHING SYSTEMS:

NUMBER OF SOLUTIONS OF A LINEAR SYSTEM

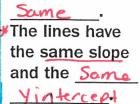
One solution The solution is

> The lines INTERSECT The lines have DIFFERENT slopes.

No solution



★The lines are percile! (/ ★The lines have the same slope and DIFFENT


y-intercepts. * When both Voricbles are eliminated and the STMT is

FALSE >

Infinitely many solutions

*The lines are the

ucricbles are eliminated and The STMT IS TRUE ->

00 SOLUTIONS

Example 1 A linear system with no solutions

Show that the linear system has no solution.

$$-2x + y = 1$$
 Equation 1

$$-2x + y = -3$$
 Equation 2

Solution

Method 2 Elimination (Subtraction)

Subtract the equations.
$$-2x + y = 1$$
$$-1(-2x + y = -3)$$

Solutions are all the

an solutions

The variables are ELIMNATEP and you are left with

a FALS F This tells you that the system has No So LUTION

Example 2 A linear system with infinitely many solutions

Show that the linear system has infinitely many solutions.

$$x + 3y = -3$$

Equation 1

$$3x + 9y = -9$$
 Equation 2

Solve

$$(x+3y=-3)x3 \rightarrow -3x-9y=9$$
 $3x+9y=-9$
 $3x+9y=-9$
 $0=0$ T

The variables are ELIMINATED and you are left with a statement that is TRUE

This tells you that the system has ___

INFINITE SOLUTIONS

Checkpoint Tell whether the linear system has no solution or infinitely many solutions. SOLVE WITH SUBSTITUTION

1.
$$y = 2x - 7$$

 $4x - 2y = 14$
 $4x - 2(2x - 7) = 14$
 $4x - 4x + 14 = 14$
 $14 = 14$

INFINITE SOLUTIONS BOTH Ucricbles drupped out + STMT IS TRUE.

Both vericbles drapped out + STAT IS FALSE