ID: 1

10.3 Practice A

Date_____ Period____

FUNC.e.4

Solve the quadratic function by graphing.

For the following function:

(a) Clearly graph at least 5 points and provide the supporting table of values in the space provided below. Mark the vertex on the table.

(b) Give the ordered pair for the y-intercept: (0,3). If possible, mark it on the graph with a "Y".

(c) Calculate the axis of symmetry and give the appropriate equation. Mark it "AS" on the graph.

SHOW WORK HERE:

 $AS: X = \frac{2}{2(-1)}$

X = -1

Work like this

(d) Give the ordered pair for the vertex ______. Mark it "V" on the graph.

(e) Give the ordered pair(s) for the x-intercept(s) (-3,0) (1,0).

Mark them with X's on the graph.

(f) Solve the quadratic function. The solutions are x=

1) $y = -x^2 - 2x + 3$

- 2) Solve the quadratic function by graphing.
- (a) Clearly graph at least 5 points and provide the supporting table of values in the space provided below. Mark the vertex on the table.
- (b) Mark the y-intercept on the graph with a "Y".
- (c) Calculate the axis of symmetry. Mark it "AS" on the graph & give the appropriate eq.
- (d) Mark the vertex with a "V" on the graph and label the ordered pair
- √(e) Mark any x-intercept(s) with X's on the graph.
- (f) Solve the quadratic function. The solution(s) are x=____

X= NO SOLUTION

$$y = -x^2 + 4x - 6$$
 $A = -1$
 $B = 4$
 $C = -1$

3) Solve the quadratic function by graphing.

- (a) Clearly graph at least 5 points and provide the supporting table of values in the space provided below. Mark the vertex on the table.
- (b) Mark the y-intercept on the graph with a "Y".
- C) Calculate the axis of symmetry. Mark it "AS" on the graph and give the appropriate eq.
- (d) Mark the vertex with a "V" on the graph and label the ordered pair
- (e) Mark any x-intercept(s) with X's on the graph.
- (f) Solve the quadratic function. The solution(s) are x=_

$$y = x^2 - 2x - 3$$

 $A = 17$ $B = -2$ $C = -3$

AS:
$$X = \frac{2}{2(1)}$$
 $X = 1$ $X = 1$