AP Statistics – 9.1Power Name: 2020 KEY Goal: Understand Power and Review Type I and Type II Errors Date:

Section A - REVIEW Type I and Type II Errors

Test Yourself:

Fill in the table: Reject Ho, FTR Ho, Ho true, Ho False, Type I error, Type II error, Power, α, β

Truth about the population

Conclusion based on sample

	HOTRUE	HO FALSE
Reject Ho	TYPE I ERROR	LORRECT (power =)
FAILTO REject Ho	CORRECT	Type IL EREOR

Example "Faster fast food?" The manager of a fast-food restaurant wants to reduce the proportion of drive-through customers who have to wait to receive their food once their order was placed. Based on store records, 63% of customers had to wait when they got to the cashier's window. To reduce this wait time proportion, the manager assigns an additional employee to assist with drive-through orders. During the next month the manager will collect a random sample of drive-through times.

Ho: p = 0.63 Ha: p < 0.63

SATISFACTION

where p = the true proportion of drive-through customers who have to wait more than 2 minutes after their order is placed to receive their food.

1) Describe <u>Type I Error</u> in this setting. Explain the financial consequence(include the impact with new employee)

THE MANAGER FINDS CONVINCING EVIDENCE CUSTOMER

SATISFACTION HAS IMPROVED WITH THE EXTRA EMPLOYEE,

WHEN IN FACT 63% OF CUSTOMERS WAIT LONGER THAN

CONSEQUENCE: MGR IS SPENDING MURE &'S AMINUTES

FOR AN ADDITIONAL EMPLOYEE ASID C.S. NOT IMPROVED

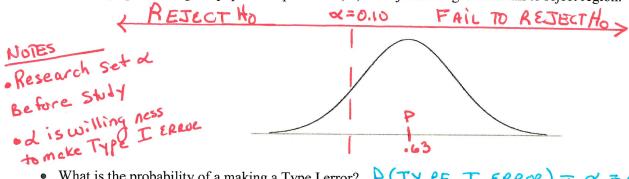
2) Describe **Type II Error** in this setting. Explain the financial consequence(include the impact with new employee)

THE MANAGER DOES NOT FIND CONVINCING EVIDENCE

CUSTOMER SERVICE HAS IMPROVED WITH EXTRA EMPLOYEE,

WHEN IN FACT 63% OF CUSTOMERS WAIT LESS THAN

CONSEQUENCE: MGR FIRES ADDITIONAL 2MINUTES

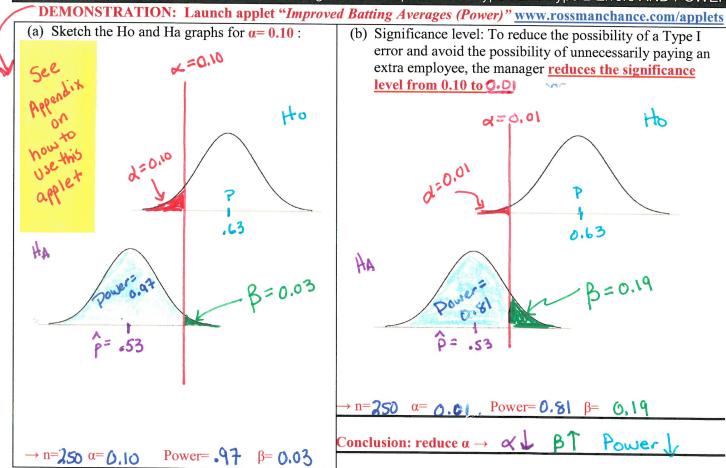

EMPLOYEE AND UPSETS CUSTOMERS WITH POOR SERVICE

WHICH IS WORSE?

TYPE I ERRUR -> LOWER &

TYPE I ERRUR -> INCREASE &

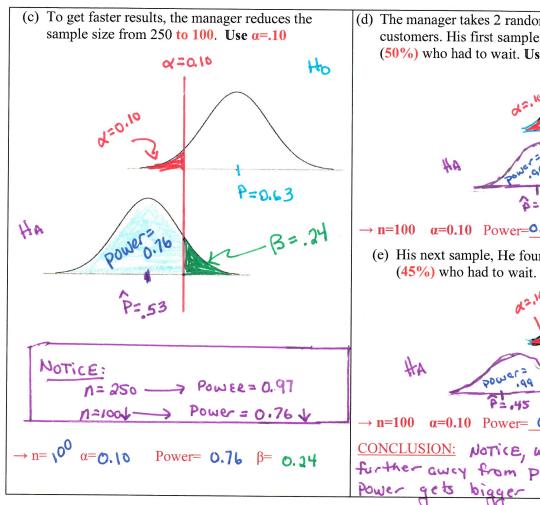
- 3) Suppose that the manager decided to carry out this test using a significance level of $\alpha = 0.10$. He takes a random sample of 250 orders, the manager found 135 customers (about 53%) who had to wait when they got to the cashier's window to receive their food.
 - Make a graph labeling the population parameter, α, the rejection region and fail to reject region.

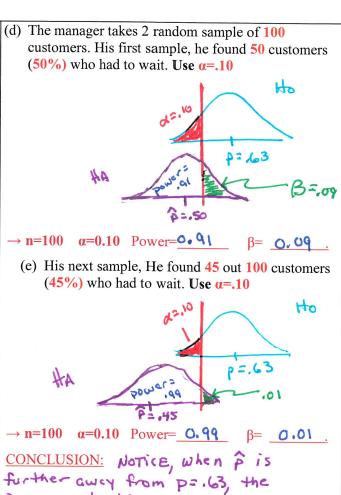


- What is the p-value for this test?

<u>Hypothesis</u>	Sample Results USE [1-PROPZTEST]	
$H_0: p = 0.63$	n=250	
$H_a: p < 0.63$	Find the P-value = $P(z < -3.21) = 0.001$	

• What decision would the manager make)? Since the puclue (0.001) IS LESS THAN 20.10
WE REJECT HO. WE HAVE CONVINCING EVIDENCE THE CUSTOMER WAIT TIME


Section B - NEW CONCEPTS - Understanding Relationship between Type I and Type 2 Errors AND POWER



• X+B have inverse relation ships • X+ Power go in same direction

Ho

B=0.19

• Summarize what you have learned about the factors that affect the power of a test.

What happens when you increase α? of THEN BY AND POWER 1 What happens when you some sample size (n)? nt THEN power 1 What can researcher control to reduce errors? (3) Good Experim entel DESign PRACTICES 1) Sample Size * REDUCE EXTRANEUS FACTORS 2) Predetermine & * USE OF CONTROL/BLOCKING STRATIFYING * REDUCE BIAS ADMINISTER SURVEYS

- What do you do to maximize the **POWER** of a test?
 - 1 POWER THEN INCREASE 'n " (decreases vorichility 1) Sample Size:
 - TO + POWER THEN INCREASE & (makes rejecting to easier) 2) Alpha Level:
 - 3) Alternative P-value: Power is large as the Ha value is more

Part D - Good AP Test definitions to know

- Definitions for POWER of a test
 - o Power is a correct decision
 - o **Power interpretation**: assuming the Pop. Parameter is _____, there is a ____ probability of finding convincing evidence of the alternative
 - o **Power Probability Statement** → P(Reject Ho | Ha is true)
- Probability Statements
 - $P(Type \ I \ Error) = \alpha \rightarrow P(Reject \ Ho \ | \ Ho \ is \ true)$
 - **P(Type II Error)** = β → P(Fail to Reject Ho | Ho is false)
 - \circ β = 1- Power

Part E - Power of a Test - Past Multiple Choice Questions

2002 Question #35

In a test of the hypothesis H₀: μ = 100 *versus* H_a: μ > 100, the power of the test when μ =101 would be greatest for which of the following choices of sample size n and significance level α ?

- A) n = 10, $\alpha = 0.05$
- B) n = 10, $\alpha = 0.01$
- C) n = 20, $\alpha = 0.05$
- D) n = 20, $\alpha = 0.01$
- E) It cannot be determined from the information given.

ANSWER () Select the largest scomplesize (n)

2012 Admin version

- 20. Suppose that on a hypothesis test for a single population mean, H_a : $\mu < 10$. Assume that H_a is true. For a fixed sample size and significance level α , the power of the test will be greatest if the actual mean is which of the following?
 - (A) 8
 - (B) 9
 - (C) 10
 - (D) 11
 - (E) 13

HA M=10

Select the mean the furthest

away For Ho (M=10)

Appendix: <u>Power Demonstration</u>: How would the following changes affect the power of the test? Launch Applet (*Improved Batting Averages*) - http://www.rossmanchance.com/applets/power.html

Example "Faster fast food?" H_0 : p = 0.63 versus H_a : p < 0.63

He found from the random sample of 250 orders, that 53% of customers waited more than 2 minutes to receive their food once their order is placed.

(a) Reduces the significance level: $\alpha = 0.10 \Rightarrow \alpha = 0.01$.

Launch applet

- Improved Batting Averages (Power)
- www.rossmanchance.com/applets

For our test of:

Ho: p = 0.63

Ha: p < 0.63

We assume:

phat =
$$0.53$$
, $n = 250$, $\alpha = 0.10$

Step 1 - Enter

- 0.63 for the hypothesized value of p or π
- 0.53 for the alternative hypothesis
- 250 for the sample size, and
- 10,000 for the number of samples.
- Press Draw Samples.

Step 2 - Enter Select "PROPORTION

- In the drop down menu that says "Choose option," choose Level of Significance and enter 0.10 for α.
- Press "count" It wishowal tenative "
- Result: Power of the test is ~97% and β=.03

α =0.10 [part a Power Simulation n = 250 Hypothesized Hypothesized value of π : 0.63 Alternative value of π : 0.53 Sample size: 250 Number of samples: 10000 Total = 10000 Draw Samples Level of Significance: $\alpha = 0.10$ Count Reset Empirical Level of Significance: 917/10000 = 0.0917 Approximate Power: 9738/10000 = 0.9738

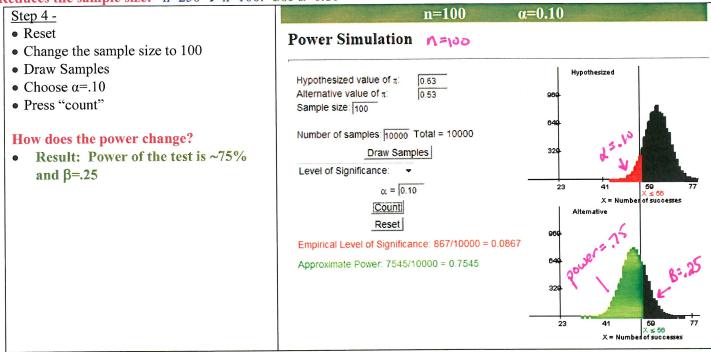
Step 3 -

- Change the value of $\alpha = 0.01$ and
- Press Count.

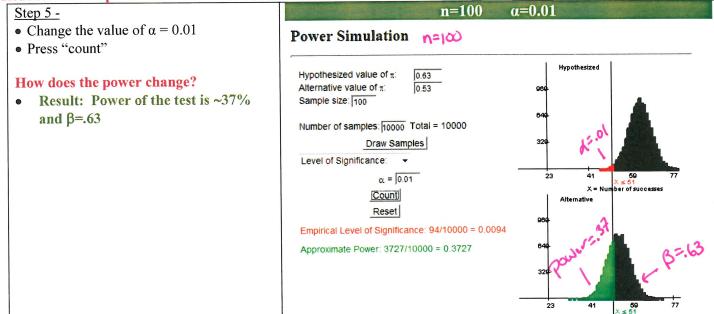
How does the power change?

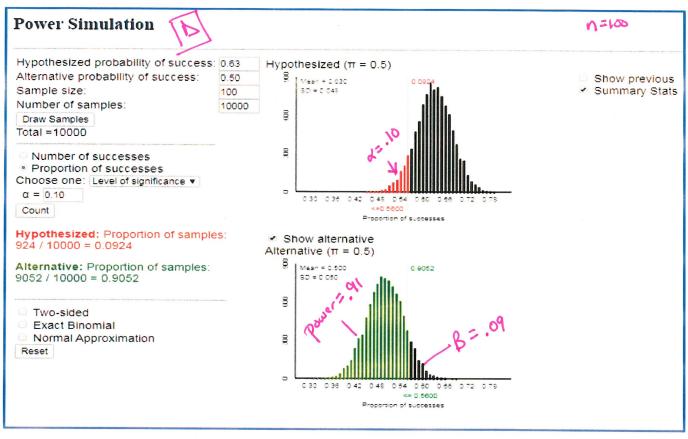
• Result: Power of the test is ~82% and β=.18

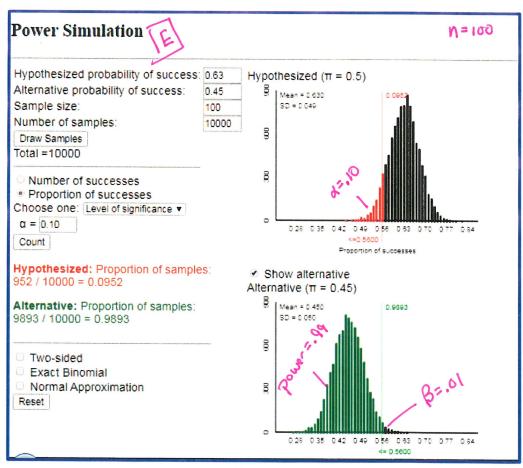
Hypothesized value of π: 0.63 Alternative value of π: 0.53 Sample size: 250 Number of samples: 10000 Total = 10000 Draw Samples Level of Significance: ▼ α = 01 Countl Reset Empirical Level of Significance: 96/10000 = 0.0096


Power Simulation n = 250

Approximate Power: 8155/10000 = 0.8155


 α =0.01 [part a]2


C:\Users\pgroves\Documents\AP Stats 2019-20\AP Hypothesis\9.1Power\9.1POWER Rossman Demo T


(b) Reduces the sample size: $n=250 \rightarrow n=100$. Use $\alpha=0.10$

(c) Reduces the sample size: $n=250 \rightarrow n=100$. Use $\alpha=0.01$

