Algebra 1
Name \qquad ID: 1
8.3 Practice A

Date \qquad Period \qquad
8.3 INTRODUCTION TO CONVERTING NEGATIVE TO POSITIVE EXPONENTS.

Simplify. Answer using only positive exponents.

1) $\frac{4 x^{1}}{8 x^{4}}=\frac{1 x^{1-4}}{2}=\frac{x^{-3}}{2}=\frac{1}{2 x^{3}}$
2) $\frac{3 x^{2}}{4 x^{-4}}=\frac{3 x^{2-(-4)}}{4}=\frac{3 x^{6}}{4}$
3) $\frac{4 n^{2}}{2 m^{-4}} \frac{2 N^{2-(-4)}}{1}=2 N^{6}$
4) $\frac{3 x^{-3}}{7 x^{-1}}=\frac{3 x^{-3-(-1)}}{7}=\frac{3 x^{-2}}{7^{-2}}=\frac{3 x^{2}}{7}$
5) $\frac{6 x^{-3}}{8 x}=\frac{3 x^{-3-1}}{4}=\frac{3 x^{-4}}{4}=\frac{3}{4 x^{4}}$
6) $\frac{5 v^{-2}}{8 v^{3}}=\frac{5 v^{-2-3}}{8}=\frac{5 v^{-5}}{8 t}=\frac{5}{8 V^{5}}$
7) $\frac{3 x^{-4}}{9 x^{2}}=\frac{1 x^{-4-2}}{3}=\frac{x^{-6}}{3}=\frac{1}{3 x^{6}}$
8) $\frac{3 n^{-2}}{n^{-3}}=\frac{3 N^{-2-(-3)}}{1}=\frac{3 N}{1}=3 \mathrm{~N}$
9) $\frac{5 x^{-4}}{6 x^{4}}=\frac{5 x^{-4-4}}{6}=\frac{5 x^{-8}}{64}=\frac{5}{6 x^{8}}$
10) $\frac{2 x^{-2}}{3 x^{-4}}=\frac{2 x^{-2 \hat{-(-4)}}}{\frac{2 x^{2}}{3}}=\frac{2 x^{2}}{3}$

Rule for D ivisiun for the some base is to Subtract exponents $\underset{-1-}{\text { Ex }} \frac{x^{10}}{x^{4}}=x^{10-4}=\sqrt{x^{6}}$

NAQ.c. 3 Evaluate complex numeric expressions with whole number exponents demonstrating the ability to use the product, power, and quotient properties
\#'s 11-14, SHOW THE FOLLOWING WORK - (1) SHOW +,-,,* EXPONENTS, (2) EXPAND, then (3) EVALUATE
11) $\frac{10^{7}}{10^{2}}$
12) $\frac{(-12)^{7}}{(-12)^{5}}$

$$
10^{7-2}=10^{5}=1100,000
$$

13) $\frac{(-18)^{4}}{(-18)^{4}}$

$$
\boldsymbol{\pi}^{(-12)^{7-5}=(-12)^{2}}=144
$$

remember ()'s with Neyotive H's!

$$
(-18)^{4-4}=(-18)^{0}=1
$$

14) $\left((-2)^{3}\right)^{3}$

REVIEW EXPONENTS WITH NUMBERS AND VARIABLE. Simplify. Clearly show work.
17) $\left(\frac{2 n^{4}}{n^{2}}\right)^{(3)}$ 2 methods to simplify

$$
\frac{2^{3} N^{4 \cdot 3}}{N^{2 \cdot 3}}=\frac{8 N^{12}}{N^{6}}=\frac{8 N^{12-6}}{8 N^{6}}
$$

19) $\left(3 x^{0} y^{3}\right)^{2} \longleftrightarrow 3^{2} x^{0.2} y^{3.2}=$

implied -1
20)

$$
\frac{\left(-x^{4} y^{3}\right)^{4}}{x^{16} y^{12}}=(-1)^{4 \cdot 4} y^{3 \cdot 4}=
$$

23) $\left(-12 x^{3} y^{2}\right)^{0}$
anything to the 0 is $1-->$

$$
(-12)^{0} \cdot x^{0} y^{0}=1
$$

25) $\left(-3 x^{4} y^{0}\right)^{4}=$

$$
\begin{gathered}
(-3)^{4} x^{4.4} y^{0.4}= \\
+81 x^{16} y^{\prime}= \\
81 x^{16}
\end{gathered}
$$

16) $\underset{(4 x)^{0}}{\frac{3 x^{2}}{4 x^{2}} \longleftrightarrow 1}$
17) $\left(-\frac{3 y^{2}}{4 x^{3}}\right)^{3}=\frac{(-3)^{3} y^{2.3}}{4^{3} x^{3.3}}-\frac{27 y^{6}}{64 x^{9}}$
18) $\left(5 x y^{4}\right)^{3}=5^{3^{1}} x^{1 \cdot 3} y^{4 \cdot 3}$

$$
125 x^{3} y^{12}
$$

22)

24) $\left(-5 x^{4} y^{3}\right)^{2}$

$$
(-5)^{2} x^{4.2} y^{3.2}=25 x^{8} y^{6}
$$

26) $\left(-4 x^{3} y^{2}\right)^{3}$
$(-4)^{3} x^{3 \cdot 3} y^{2 \cdot 3}=$

$$
-64 x^{9} y^{6}
$$

8.3 Practice B

Date \qquad Period \qquad
WORIKING WIITH DIVISION. Simplify. Clearly show work. Use only positive exponents.

1) $\frac{2 x^{4} y^{4}}{4 x^{5} y^{-1}}=\frac{1 x^{4-5} y^{4-(-1)}}{2}$

$$
\begin{aligned}
& =\frac{1 x^{-1} y^{5}}{2} \\
& =\frac{y^{5}}{2 x}
\end{aligned}
$$

2) $\frac{900 y x^{-4}}{500 x^{4} y^{-1}}=\frac{9 x^{-4-4} y^{1-(-i)}}{5}$

3) $\frac{4 x^{2} y^{5}}{2 x^{4} y^{-1}}=\frac{2 x^{2-4} y^{5-(-1)}}{1}$

$$
=\frac{2, x^{-2} y^{6}}{11}
$$

4) $\frac{6 x^{2} y^{-4}}{8 x^{-1} y^{2}}=\frac{3 x^{2 \hat{\hat{-(-1)}}} y^{-4-2}}{4}$

$$
=\frac{2 y^{6}}{x^{2}}
$$

$$
\begin{aligned}
& =\frac{3 x^{3} y^{-6}}{4} \\
& =\frac{3 x^{3}}{4 y^{6}}
\end{aligned}
$$

5) $\frac{3 y^{-4}}{8 x^{5} y^{5}}=\frac{3 y^{-4-5}}{8 x^{5}}=\frac{3 y^{-9}}{8 x^{5}}$

6) $\left(+\frac{-3 x y^{-3}}{4 x^{-1} y^{3}}\right)^{(4)}$

$$
\text { 7) }\left(\frac{3 y x^{2}}{-x^{-3}}\right)^{3}=\frac{3^{3} x^{2 \cdot 3} y^{1 \cdot 3}}{(-1)^{3} x^{-3 \cdot 3}}
$$

$$
\begin{aligned}
& =\left(\frac{(-3)^{-4} x^{1 .-4} y^{-3 \cdot-4}}{\left.4^{-4}\right) x^{-1 \cdot-4} y^{3 \cdot-4}}\right. \\
& =\frac{4^{4} x^{-4} y^{12}}{(-3)^{4} x^{4} y^{-12}} \\
& =\frac{256 x^{-4-4} y^{12-(-12)}}{81} \\
& =\frac{256 x^{-8} y^{24}}{81}
\end{aligned}
$$

$$
\% x^{-3}=\frac{27 x^{6} y^{3}}{(-1) \cdot x^{-9}}
$$

$$
=-27 x^{6-(-9)} y^{3}=\frac{-27 x^{15} y^{3}}{-1-}
$$

Simplify. Clearly show work. Your answer should contain only positive exponents.
8) $\frac{5 n^{-2}}{12} \frac{5}{N^{2}}$
9) $\left(3 x^{-1}\right)^{3}=3^{3} x^{-1 \cdot 3}=\frac{27 x_{2}^{-3}}{14}$

$$
\frac{27}{x^{3}}
$$

10) $\left(3 x^{-3} y^{2}\right)^{4}=3^{4} x^{-3 \cdot 4} y^{2 \cdot 4}$

$$
\begin{aligned}
& =\frac{81 x^{-12} y^{8}}{12} \\
& =\frac{81 y^{8}}{x^{12}}
\end{aligned}
$$

11) $\left(-4 x^{-2} y^{-4}\right)^{3}$

$$
\begin{aligned}
& (-4)^{3} x^{-2.3} y^{-4 \cdot 3}= \\
& \frac{-64 x^{-6} y^{-12}}{1}=\frac{-64}{x^{6} y^{12}}
\end{aligned}
$$

12) $\left(5 x^{-3} y^{-4}\right)^{2}$

$$
\begin{aligned}
& 5^{2} x^{-3 \cdot 2} y^{-4 \cdot 2}= \\
& \frac{25 x^{-6} y^{-8}}{1^{2}}=\frac{25}{x^{6} y^{8}}
\end{aligned}
$$

14) $\left(2 x^{4} y^{-2}\right)^{-2}$
$(2)^{-2} x^{4 \cdot-2} y^{-2 \cdot-2}$

$$
\begin{aligned}
\frac{(2)^{-2} x^{-8} y^{4}}{1} & \frac{y^{4}}{(2)^{2} x^{8}}
\end{aligned}=\frac{y^{4}}{4 x^{8}}
$$

16) $\left(-7 x y^{-1}\right)^{2}=$

$$
(-7)^{2} x^{1.2} y^{-1.2}=
$$

15)

$$
\begin{aligned}
& \text { 5) } \begin{array}{l}
\left(-3 n m^{3}\right)^{(3)} \\
(-3)^{-3} N^{1 \cdot-3} m^{3 \cdot-3}= \\
\frac{(-3)^{-3} N^{-3} m^{-9}}{(-3)^{3} N^{3} M^{9}}= \\
\frac{1}{-27 N^{3} m^{9}}
\end{array}
\end{aligned}
$$

17) $\left(-2 x^{2} y^{-3}\right)^{-3}$

$$
\begin{aligned}
(-2)^{-3} x^{2 \cdot-3} y^{-3 \cdot-3} & = \\
\frac{(-2)^{-3} x^{-6} y^{9}}{1} & = \\
\frac{y^{9}}{(-2)^{3} x^{6}} & =\frac{y^{9}}{-8 x^{6}}
\end{aligned}
$$

