Guided Notes – 8.3 Estimating a Population Mean Cl

- 1. Inference about population proportions (____) based on _____ variables.
 - Proporations are ______.
- 2. Inference about population means (____) based on _____ variables.
 - Means are _____.
- 3. In most real world problems, we do <u>NOT</u> know the population ______(μ) or (σ) , therefore we <u>cannot use</u> the <u>*Z*-statistic for</u>

inference for means.

- We will learn a new test statistic in this chapter that will always be used for inference tests with means called the <u>t-Statistic</u>
- You will **NEVER** be asked to do a "*1 Sample Z-interval for a population mean*". We never know the population standard deviation (σ), so this is a useless test.

Estimating Sample Sizes for Means

- 4. What is the formula to **calculate the <u>sample size</u> for means**?
 - a) What statistic will be used to calculate the <u>sample size</u> for means?
 - b) What critical value will be used to calculate the <u>sample size</u> for means?
 - c) What conditions are required?

1.	R	
2.	I	
3.	N	
4.	Plus you must know the population	_(σ)

5. Describe the three steps for choosing a sample size for a desired margin of error when estimating μ .

6. Complete the Check Your Undertanding "Monkeys" -- page 501-502.

1) Define population parameter	μ=
2) Get information to estimate the sample size	CL= z*= σ= ME=
3) Use formula used to determine the sample size <i>n</i> for a population mean:	$z^* \frac{\sigma}{\sqrt{n}} \le ME$. Solve for <i>n</i> .
4) Substitute numbers and clearly show all steps to calculate the sample size <i>n</i>	
5) Always roundwhole number to ensure ME is met.	We need to sample

7. It is the size of the ______ that determines the margin of error. The size of the

does not influence the sample size we need. This is true as long

as the population_____

8.3 Estimating a Population Mean when "<u>σ KNOWN</u>"

8. What is the standardized value of the z-statistic?

a) See Figure 8.11 to understand this new z-statistic

Sketch the sampling distribution of \overline{x} when	Compare the	Sketch the standard normal
the normal condition is met and σ is known.	distributions	distribution .

b) When we don't know "σ," we estimate it using the _____

; creating a new statistic called the "t-statistic."

- 9. SKIP "Bingo" Actvity
- 10. What is the fomula for the "t-statistic"?
 - a) How do you calculate the degrees of freedom for a t distribution?

See Figure 8.13 to understand the t-statistic

 b) Sketch normal distribution;t-distrib. with df=9; and t-distrib. with df=2. 	c)	Describe the similarities between a standard normal distribution and a t distribution.
	d)	Describe the differences between a standard normal distribution and a t distribution.
	e)	What happens to the t distribution as the degrees of freedom increase?

11. How do you find the critical value t* using TI84? You only need to know how to use Table B if you have a TI83.

12. Check Your Understanding -- page 507 (use TI84, sketch the graph, answers in back of book)

a)	b)	c)

13) What is the formula for the <u>standard deviation</u> of the sampling distribution of the sample mean \overline{x} ?	14) What is the <u>standard error</u> of the sample mean \overline{x} ?

	General form to calculate a confidence interval is on the Green Sheet : statistic ± (critical value) ● (standard deviation of the statistic)
15.	What is the formula for a <i>1-sample t- interval for a population mean</i> ?
	a) What statistic will be used to calculate this confidence interval?
	b) What is the critical value? with df=
	c) What part of this formula is the margin of error (ME)?
16.	What conditions are required for a <i><u>1-sample t- interval for a population mean</u>?</i>
	• R
	o
	0
	• N
	O
	0
	• 1
	- 1

17. Walk through example "Video Screen Tension."

- You do not need to write the problem.
- Enter the data and use your calculator to replicate all steps. See "Technology Corner" page 514.
- <u>Your Notes</u>:

- 18. "Auto Pollution" example is optional. <u>Your Notes</u>:
- 19. What is a "Robust" procedure? And, when are t-procedures NOT robust?

20. Describe the 2 different normal conditions when using t-procedures:

•	(n<15 and n<30)
•	(n≥30)

21. Walk through example "People, Trees, and Flowers." <u>Your Notes</u>: