| AP Statistics – 6.3N Activity | (Revised 2020 to use Zscores) | Name: | |---|-------------------------------|-------| | Goal: Understand Normal Model as an Approximation to the Binomial Model | | Date: | ## I. Example: Teens and Debit Cards In a survey of 506 teenagers ages 14-18, subjects were asked a variety of questions about personal finance. One question asked teens if they had a debit card. Suppose that exactly 10% of teens ages 14-18 have debit cards. (a) Show that the distribution of X is approximately binomial. Let X = the number of teens in a random sample of size 506 that have a debit card. B DEBIT OR NO DEBIT CARD J Sampling without replacement: SINCE THERE ARE MILLIONS OF TEENS AND WE HAVE A SAMPLE OF 506, THE 10% CONDITION HAS BEEN MET. This is a binomic! > B (506.1) (b) Check the conditions for using a Normal approximation in this setting. To use the Normal distribution you must check BOTH np and n (1-p) must be Greater or EQUAL TO 10. Check: np > 10 n (1-p) > 10 506 (.1) > 10 506 (.9) > 10 50.6 > 10/ 455.4 > 7/10/ (c) Use a Normal distribution to estimate the probability that 40 or fewer teens in the sample have debit cards. USING A NORMAL APPROXIMATION: (9+6) Conditions met n=506 p=.1 $\int_{0.1}^{1} \int_{0.1}^{1} \int_{0$ STATE DISTRIBUTURD -> N(50.6, 6.75) $P(X \le 40) = P(Z \le 40 - 50.6) = P(Z \le -1.57) P(Z$ THERE is APPROXIMATE LY, A _6 % Chance that 40 OR FEWER TEENS WILL have a debit card. EXACT PROBABILITY WITH BINOMIAL DISTRIB! B(506,.1) P(X \(\) \(Remember ** Binonial Distrib Graph WITH P=. 1 is Skewed Right THEREFORE IT WILL HAVE A LARGER AREA 2) As * n" + the distrib. approaches a No-mal distrik ## II. Notes -see definitions on page 395 The Normal Distribution can be used as an approximation for the binomial distribution - ► If... the number of successes and failures are at least 10. $(np \ge 10 \text{ and } n(1-p) \ge 10)$ - > In English that means when the number of trials is large, this method can be used. $$\mu = np$$ $$\sigma = \sqrt{np(1-p)}$$ $$P(x \ge 4000) = P\left(z \ge \frac{x - \mu}{\sigma}\right)$$ Optional to excludate z-score, but you MUST CLEARLY sketch normal graph. <u>In the above model</u>, replace the inequality with less than, etc., whatever is appropriate for the problem you are solving. Additionally, replace the 4000 for your problem. ## Steps: **Step 1: Define the Random Variable and check binomial conditions** Step 2: Check the normal conditions np ≥10 and n(1-p) ≥10 ** You must show BOTH calculations to indicate you verified the normal condition. Step 3: Calculate the mean and standard deviation with the formulas above (green sheet); and state the normal model $N(\mu,\sigma)$ Step 4: Sketch the normal graph (identify area for probability, mean and x-value); and calculate the probability of interest Step 5: State your conclusion, in the context of the problem.