Section 9.3B Inference for Means: Paired Data

Objective

- PERFORM significance tests for paired data are called: paired t procedures.

- Comparative studies (i.e. 2 observations on 1 individual or 1 observation on 2

 similar individuals)- are more convincing than single-sample investigations.
- One-sample inference is less common than comparative inference.
- Study designs that involve making two observations on the same individual, or one observation on each of two similar individuals, result in paired data.

- Example of paired data

- By measuring the same quantitative variable twice, as in the job satisfaction study, we can make comparisons by analyzing the differences in each pair.
- If the conditions for inference are met, we can use one-sample t procedures to perform inference about the mean difference μ_{d}.

Paired T-Tests

Key Points

\checkmark If we somehow know σ, we can use a z test statistic and the standard Normal distribution to perform calculations.
\checkmark In practice, we typically do not know σ. Then, we use the one-sample t statistic

$$
t=\frac{\bar{x}-\mu_{0}}{s_{x} / \sqrt{n}}
$$

with P-values calculated from the t distribution with $n-1$ degrees of freedom.
\checkmark Analyze paired data by first taking the difference within each pair to produce a single sample. Then use one-sample t procedures.

- Example: Caffeine Withdrawal
- Carrying Out a Paired T- Test

1) State Hypotheses and Sketch Graph
$\mu_{d}=$ the true mean difference (placebo-Caffeine) in depression score
$H_{0}: K_{D}=0 \quad$ caffeine with drawl has No effect on depression score
$\left.H_{A}: \mu_{D}\right\rangle 0$ depriving caffeine leads to an increase in depression

Set significance level: $\alpha=.05$

2) Check Conditions:

6 UNKNOWN \rightarrow t-statistic
(i) Random IN this experiment, Subjects were randomly assign THE ORDER OF 2 TREATMENTS
(1) Caffeine capsule
(2) placebo
(2) INAEPENDENT WE ARE NOT SAMPLING SO WE DO NOT CHECK

We assume, the experiment is conducted 10% condition! Correctly and changes in depression scores are independent for each subject
(3) NORMAL Since the sample is small $(n=11)$ we need to look at the shope of the distribution.
Reviewing a box-plot, we did NOT find any outliers. The histogram does not indicate strong skewness or outlier. The t-distribution is

3) Mechanics: Test statistic and P-value:

Name Test:: PAIRED t-test for difference of means (or μ_{Δ})
Sampling Distribution - State statistic and redraw graph:

$$
\binom{1 \text { var } \text { STr }^{r s}}{13} \rightarrow \begin{array}{ll}
\vec{X}_{d}=7.36 & n=11 \\
s_{d}=6.92 & d f=10
\end{array}
$$

Calculate Test statistic

$$
t=\frac{\bar{x}_{D}-\mu_{D}}{s_{D} / \sqrt{n}}=\frac{7.36-0}{6.92 / \sqrt{14}}=3.53
$$

Calculate P-value (remember probability statement):

4) Conclude:

Since the prolue of 0.0027 is less than our chosen significance level of $\alpha=.05$, We reject the null hypothesis.

We have convincing evidence to con clude that depriving these caffeine dependent Subjects of caffeine resulted in an average increase of depression score

