Chapter 8: Estimating with Confidence

Key Vocabulary:

- point estimator
- point estimate
- confidence interval
- margin of error
- interval
- confidence level
- random
- normal

- independent
- four step process
- level C confidence interval
- degrees of freedom
- standard error
- one -sample z interval
- t distribution
- t-procedures

- one-sample t interval
- robust

TAKING A LOOK AT TOMORROW'S WEATHER... WILL BE BETWEEN 40 BELOW ZERO AND 200 ABOVE ! THIS GUY'S NEVER WRONG

8.1 Confidence Intervals: The Basics (pp.615-643)

- 1. A *point estimator* is a statistic that...
- 2. The value of the point estimator statistic is called a ______ and it is our

"best guess" at the value of the _____.

- 3. **Example** "From Batteries to Smoking" Answer parts "a" and "b."
 - a) Point Estimator is ______ (notation is _____) for the population mean (µ).
 - The Point Estimate is______
 - b) Point Estimator is ______ (notation is _____) for the population proportion (p).
 - The Point Estimate is______
- 4. **Example** "The Mystery Mean" we will do as an activity next class.

6.

7.

8.

5. Summarize the facts about *sampling distributions* learned in chapter 7:

sampling distributions <i>for means</i>	sampling distributions for proportions						
• Shape	• Shape						
• Center	• Center						
• Spread	• Spread						
"The Big Idea is that the $\int \overline{x}$ tells us how close to							
the $(\overline{\boldsymbol{x}})$ is like	ely to be.						
• Or, said a different way "How close is likely to be to the population							
A <u>Confidence Interval</u> for a parameter has 2 parts	: "estimate ± margin of error"						
a) \overline{x} and \widehat{p} are examples of the							
b) Define margin of error:							
c) The <u>confidence level C</u> is a T	hat is, in <u>C%</u> of all possible, the						
method would yield an	that captures the population						
·							
What is the difference in interpretation between Confidence Interval and Confidence Level ?							

- a) Interpret a Confidence Level (CL): "To say that we are 95% confident is shorthand for
- b) Explain how to interpret a *Confidence Interval (CI)*.
- c) The *confidence level(CL)* does <u>NOT</u> tell us the chance that a particular confidence interval captures the population parameter because the ______ is not a probability. What does CL tell us? And explain "*plausible values*?"

9. Sketch and label a 95% confidence interval for the standard normal curve N(0,1). Label the mean, ±3 standard deviations, shade the 95% confidence area, and confidence interval.

• In a sampling distribution of \overline{x} , why is the interval of numbers between $\overline{x} \pm 2s$ called a 95% *confidence interval*? <u>HINT: Think Empirical Rule.</u>

10. General form to calculate a confidence interval is on the **Green Sheet**:

statistic \pm (critical value) • (standard deviation of the statistic) statistic \pm

- a) From this formula, what is the **"margin of error?**"
- b) What does the "critical value" depend on?
- c) What does the "standard deviation" depend on?
- 11. What happens when the sample size (n) increases?
- 12. When the **<u>confidence level</u>** increases, what happens to the **<u>confidence interval</u>**?

•	 [% CI]		
•			% CI]

13. Explain the two conditions when the margin of error gets smaller.

#1	 	 	
#2			
-			

- 14. State the 3 conditions for constructing a confidence interval for population parameters p or μ .
 - Random
 - Normal
 - Independent

19. What are the two important reminders for constructing and interpreting confidence intervals?

#1_____

#2_____