7.6 Solve Linear Systems of Linear Inequalities

Goal • Solve systems of linear inequalities in two variables.

VOCABULARY:

Example:

- **Graph** $x < 5$
 - $T(0,0)$ $0 \leq 5$

- **Graph** $y \leq 5$
 - $T(0,0)$ $0 \leq 5$

System of linear inequalities

Consists of 2 linear inequalities with 2 variables.

Example:

$x < 5 - \text{dashed} - V\text{line} - m = \text{undefined}$

$y \leq 5 - \text{solid} - H\text{line} - m = 0$

Solution of a system of linear inequalities

Solution region: are all the points in the region where their graphs intersect.

GRAPHING A SYSTEM OF LINEAR INEQUALITIES

Step 1 Graph the 1st inequality.

Step 2 Graph the 2nd inequality.

Step 3 Find the Intersection of the graphs.

Step 4 The **Solution Region** is where the graphs intersect.

Use an **Arrow** to identify the solution **Region**.
Example 1: Graph the system of inequalities.

Inequality 1: \(x + 3y > 6 \)

Inequality 2: \(2x - 3y \geq 3 \)

Step 1: Graph the 1st inequality.

\(x + 3y > 6 \) (use intercepts)

\(x: 6 \quad y: 2 \) dotted line

\(T(0,0) \) \(0 > 6 \) F

Step 2: Graph the 2nd inequality.

\(2x - 3y \geq 3 \) (put in \(y = mx + b \)) solid line

\(\frac{2x}{2} - \frac{3y}{3} \geq \frac{3}{2} \)

\(y \leq \frac{2}{3}x - 1 \)

Remember: when you multiply or divide the variable by a negative number, reverse the inequality!

Step 3: Find the intersection of the graphs.

Step 4: Mark the Solution Region with an arrow.

Check Point - Graph the system of linear inequalities.

2) \(y > -2x - 3 \)

\(m = -2/1 \quad b = -3 \)

\(T(0,0) \) \(0 > -3 \) F

\(y < x \) Tricky!!

\(m = 1 \quad b = 0 \)

Pick a point to test \((4,1)\)

\(1 < 4 \) T

3) \(x + y \leq 4 \)

\(x: 4 \quad y: 4 \)

\(T(0,0) \) \(0 \leq 4 \) T

\(-y \geq -x + 6 \)

\(T(1, -1) \)

\(y \geq x - 6 \)

\(T(0,0) \) \(0 \leq 6 \) or \(0 \geq -6 \)