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+ Section 12.2
Transforming to Achieve Linearity

After this section, you should be able to…

 USE transformations involving powers and roots to achieve linearity 
for a relationship between two variables

 MAKE predictions from a least-squares regression line involving 
transformed data

 USE transformations involving logarithms to achieve linearity for a 
relationship between two variables

 DETERMINE which of several transformations does a better job of 
producing a linear relationship

Learning Objectives



+Transform
ing to A

chieve Linearity
 Introduction

In Chapter 3, we learned how to analyze relationships between two 
quantitative variables that showed a linear pattern. When two-variable 
data show a curved relationship, we must develop new techniques for 
finding an appropriate model. This section describes several simple 
transformations of data that can straighten a nonlinear pattern.

Once the data have been transformed to achieve linearity, we can use 
least-squares regression to generate a useful model for making 
predictions. And if the conditions for regression inference are met, we can 
estimate or test a claim about the slope of the population (true) 
regression line using the transformed data.

Applying a function such as the logarithm or square root to a 
quantitative variable is called transforming the data. We will see in 
this section that understanding how simple functions work helps us 
choose and use transformations to straighten nonlinear patterns.
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When you visit a pizza parlor, you order a pizza by its diameter—say, 10 
inches, 12 inches, or 14 inches. But the amount you get to eat 
depends on the area of the pizza. The area of a circle is π times the 
square of its radius r. So the area of a round pizza with diameter x is
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This is a power model of the form y = axp with a = π/4 and p = 2.

Although a power model of the form y = axp

describes the relationship between x and y 
in this setting, there is a linear relationship 
between xp and y. 

If we transform the values of the 
explanatory variable x by raising them to 
the p power, and graph the points (xp, y), 
the scatterplot should have a linear form. 
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Imagine that you have been put in charge of organizing a fishing tournament in which prizes 
will be given for the heaviest Atlantic Ocean rockfish caught. You know that many of the fish 
caught during the tournament will be measured and released. You are also aware that using 
delicate scales to try to weigh a fish that is flopping around in a moving boat will probably not 
yield very accurate results. It would be much easier to measure the length of the fish while on 
the boat. What you need is a way to convert the length of the fish to its weight.

Reference data on the length (in centimeters) and weight (in grams) for Atlantic Ocean rockfish of 
several sizes is plotted.  Note the clear curved shape.

Because length is one-dimensional and weight (like 
volume) is three-dimensional, a power model of the form 
weight = a (length)3 should describe the relationship. 

This transformation of the explanatory variable helps us 
produce a graph that is quite linear.

Another way to transform the data to achieve linearity is 
to take the cube root of the weight values and graph the 
cube root of weight versus length. Note that the resulting 
scatterplot also has a linear form.
Once we straighten out the curved pattern in the original 
scatterplot, we fit a least-squares line to the transformed 
data. This linear model can be used to predict values of 
the response variable.
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Here is Minitab output from separate regression analyses of the two sets of transformed 
Atlantic Ocean rockfish data.

(a) Give the equation of the least-squares regression line. Define any variables you use.(b) Suppose a contestant in the fishing tournament catches an Atlantic ocean rockfish 
that’s 36 centimeters long. Use the model from part (a) to predict the fish’s weight. Show 
your work.

  

Transformation 1:    weight = 4.066  0.0146774(length3)

Transformation 2 :  weight3  0.02204  0.246616(length)

  

Transformation 1:    weight = 4.066 0.0146774(363)  688.9 grams

Transformation 2 :  weight3  0.02204  0.246616(36) = 8.856

                                  weight = 8.8563  694.6 grams

(c) Interpret the value of s in context.

For transformation 1, the standard deviation of the residuals is s = 18.841 grams. 
Predictions of fish weight using this model will be off by an average of about 19 
grams. For transformation 2, s = 0.12. that is, predictions of the cube root of fish 
weight using this model will be off by an average of about 0.12.
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When experience or theory suggests that the relationship between two 
variables is described by a power model of the form y = axp, you now have 
two strategies for transforming the data to achieve linearity.

1.Raise the values of the explanatory variable x to the p power and plot the 
points          

2.Take the pth root of the values of the response variable y and plot the 
points           

What if you have no idea what power to choose? You could guess and test 
until you find a transformation that works. Some technology comes with 
built-in sliders that allow you to dynamically adjust the power and watch the 
scatterplot change shape as you do.

(x p ,y).

(x, yp ).

It turns out that there is a much more efficient method for linearizing a 
curved pattern in a scatterplot. Instead of transforming with powers and 
roots, we use logarithms. This more general method works when the 
data follow an unknown power model or any of several other common 
mathematical models.
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Not all curved relationships are described by power models.  Some 
relationships can be described by a logarithmic model of the form           
y = a + b log x.

Sometimes the relationship between y and x is based on repeated 
multiplication by a constant factor. That is, each time x increases by 1 unit, 
the value of y is multiplied by b. An exponential model of the form y = abx

describes such multiplicative growth.

exponential model

If an exponential model of the form y = abx describes the relationship 
between x and y, we can use logarithms to transform the data to produce 
a linear relationship. 

y  abx

log y  log(abx )
log y  loga  log(bx )
log y  loga  x logb

taking the logarithm of both sides

using the property log(mn) = log m + log n

using the property log mp = p log m
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We can rearrange the final equation as log y = log a + (log b)x. Notice 
that log a and log b are constants because a and b are constants.

 So the equation gives a linear model relating the explanatory variable x 
to the transformed variable log y.

Thus, if the relationship between two variables follows an exponential 
model, and we plot the logarithm (base 10 or base e) of y against x, we 
should observe a straight-line pattern in the transformed data.

If we fit a least-squares regression line to the transformed data, we can 
find the predicted value of the logarithm of y for any value of the 
explanatory variable x by substituting our x-value into the equation of the 
line.

 To obtain the corresponding prediction for the response variable y, we 
have to “undo” the logarithm transformation to return to the original units of 
measurement. One way of doing this is to use the definition of a logarithm 
as an exponent: logb a  x  bx  a
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Gordon Moore, one of the founders of Intel Corporation, predicted in 1965 that the number of 
transistors on an integrated circuit chip would double every 18 months. This is Moore’s law, 
one way to measure the revolution in computing. Here are data on the dates and number of 
transistors for Intel microprocessors:
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(a) A scatterplot of the natural logarithm (log base e or ln) of the number of transistors on a 
computer chip versus years since 1970 is shown. Based on this graph, explain why it would 
be reasonable to use an exponential model to describe the relationship between number of 
transistors and years since 1970.

If an exponential model describes the relationship 
between two variables x and y, then we expect a 
scatterplot of (x, ln y) to be roughly linear. the 
scatterplot of ln(transistors) versus years since 1970 
has a fairly linear pattern, especially through the year 
2000. So an exponential model seems reasonable 
here.

(b) Minitab output from a linear regression analysis on the transformed data is shown below. 
Give the equation of the least-squares regression line. Be sure to define any variables you use.

  ln(transistors)  7.0647  0.36583(years since 1970)
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(c) Use your model from part (b) to predict the number of transistors on an Intel computer 
chip in 2020. Show your work.

(d) A residual plot for the linear regression in part (b) is shown below. Discuss what this graph 
tells you about the appropriateness of the model.

  

ln(transistors)  7.0647  0.36583(years since 1970)
 7.0647  0.36583(50)  25.3562

  

logb a  x  bx  a
ln(transistors)  25.3562  loge (transistors)  25.362

transistors = e25.362 1.028 1011

The residual plot shows a distinct pattern, with the 
residuals going from positive to negative to positive as 
we move from left to right. But the residuals are small in 
size relative to the transformed y-values. Also, the 
scatterplot of the transformed data is much more linear 
than the original scatterplot. We feel reasonably 
comfortable using this model to make predictions about 
the number of transistors on a computer chip.
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When we apply the logarithm transformation to the response variable y in an 
exponential model, we produce a linear relationship. To achieve linearity 
from a power model, we apply the logarithm transformation to both 
variables. Here are the details:

1.A power model has the form y = axp, where a and p are constants.

2.Take the logarithm of both sides of this equation. Using properties of 
logarithms,

log y = log(axp) = log a + log(xp) = log a + p log x

The equation log y = log a + p log x shows that taking the logarithm of 
both variables results in a linear relationship between log x and log y.

3. Look carefully: the power p in the power model becomes the slope of the 
straight line that links log y to log x.

If a power model describes the relationship between two variables, a 
scatterplot of the logarithms of both variables should produce a linear 
pattern. Then we can fit a least-squares regression line to the 
transformed data and use the linear model to make predictions.
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On July 31, 2005, a team of astronomers announced that they had discovered what appeared to 
be a new planet in our solar system. Originally named UB313, the potential planet is bigger than 
Pluto and has an average distance of about 9.5 billion miles from the sun. Could this new 
astronomical body, now called Eris, be a new planet? At the time of the discovery, there were 
nine known planets in our solar system. Here are data on the distance from the sun (in 
astronomical units, AU) and period of revolution of those planets. 

Describe the relationship between distance from the sun and period of revolution.

There appears to be a strong, positive, curved relationship between distance from the sun (AU) 
and period of revolution (years).
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(a) Based on the scatterplots below, explain why a power model would provide a more 
appropriate description of the relationship between period of revolution and distance from 
the sun than an exponential model.

The scatterplot of ln(period) versus distance is clearly curved, so an exponential model would not 
be appropriate. However, the graph of ln(period) versus ln(distance) has a strong linear pattern, 
indicating that a power model would be more appropriate.

(b) Minitab output from a linear regression analysis on the transformed data (ln(distance), 
ln(period)) is shown below. Give the equation of the least-squares regression line. Be sure 
to define any variables you use.

 ln( period )0.00025441.49986 ( distance )
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(c) Use your model from part (b) to predict the period of revolution for Eris, which is 
9,500,000,000/93,000,000 = 102.15 AU from the sun. Show your work.

(d) A residual plot for the linear regression in part (b) is shown below. Do you expect your 
prediction in part (c) to be too high, too low, or just right? Justify your answer.

  

ln( period )0.00025441.49986 ( distance )
0.00025441.49986 ( 102.15 )
6.939

 periode6.939 1032years

Eris’s value for ln(distance) is 6.939, which 
would fall at the far right of the residual plot, 
where all the residuals are positive. 

Because residual = actual y - predicted y 
seems likely to be positive, we would expect 
our prediction to be too low.
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In this section, we learned that…

 Nonlinear relationships between two quantitative variables can sometimes be 
changed into linear relationships by transforming one or both of the variables. 
Transformation is particularly effective when there is reason to think that the 
data are governed by some nonlinear mathematical model.

 When theory or experience suggests that the relationship between two 
variables follows a power model of the form y = axp, there are two 
transformations involving powers and roots that can linearize a curved pattern 
in a scatterplot. 
Option 1: Raise the values of the explanatory variable x to the power p, then 

look at a graph of (xp, y). 
Option 2: Take the pth root of the values of the response variable y, then look at 

a graph of (x, pth root of y).

Summary
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 In a linear model of the form y = a + bx, the values of the response 
variable are predicted to increase by a constant amount b for each 
increase of 1 unit in the explanatory variable. For an exponential 
model of the form y = abx, the predicted values of the response variable 
are multiplied by an additional factor of b for each increase of one unit 
in the explanatory variable.

 A useful strategy for straightening a curved pattern in a scatterplot is to 
take the logarithm of one or both variables. To achieve linearity when 
the relationship between two variables follows an exponential model, 
plot the logarithm (base 10 or base e) of y against x. When a power 
model describes the relationship between two variables, a plot of log y 
(ln y) versus log x (ln x) should be linear.

 Once we transform the data to achieve linearity, we can fit a least-
squares regression line to the transformed data and use this linear 
model to make predictions.

Summary


