12.2 Ladder of Powers

Transforming to Achieve Linearity

What to do if data is non-linear:

Questions: Watch Video by David Bock "Ladder of Powers"

<u>media.pearsoncmg.com/cmg/pmmg_m</u> <u>ml_shared/flash_video_player/player.h</u> <u>tml?aw/aw_deveaux_introstats_3/vide</u> <u>o/stat3dv_1000</u> Here V represents our variable of interest. We are going to consider this variable raised to a power λ , i.e. V^{λ}

We go up the ladder to remove left skewness and down the ladder to remove right skewness.

Ladder of Powers

Transforming with Powers (don't memorize – see graphs)

Facts about powers:

- The graph of a power with exponent 1 is a straight line.
- Powers greater than 1
 - give graphs that bend upward.
 - The sharpness of the bend increases as the power increases.
- Powers less than 1 but greater than 0
 - give graphs that bend downward.
- The logarithm function corresponds to Y = 0 (not the same as raising to the 0 power which is just a horizontal line at y = 1)
- Powers less than 0
 - give graphs that decrease as x increases.
 - Greater negative values of result in graphs that decrease more quickly.

Here are Samples of Graphs

and

Transformation x and y³

Transformation x and y²

the Transformations to create a linear association

Transformation x and y^(1/3)

Transformation x and y^(1/2)

Transformation x and log(y)

Transformation x and 1/y (y⁻¹)

Transformation x and 1/y² (y⁻²)

The Logarithm Transformation

If an exponential model of the form y = ab^x describes the relationship between x and y then we can use logarithms to transform the data to produce a linear relationship (and vice versa- if a transformation of (x,y) data to (x, log y) straightens our data, we know it's exponential

Algebraic Properties of Logarithms
$\log_b x = y$ if and only if $b^y = x$
The rules for logarithms are
1. $\log_b (MN) = \log_b M + \log_b N$
2. $\log_b (M/N) = \log_b M - \log_b N$
3. $\log_b X^p = p \log_b X$

- So how does this work? well if we have the equation y = ab^x and take the log of both sides:
 - $\log y = \log (ab^x)$
 - = $\log a + \log b^x$
 - = log a + log b (x) Does this look familiar?!

Summary of what you need to know about log transformations

- When data doesn't look straight, try both transformations: (x,y) to (x, logy) or (x, lny) and (logx, logy) or (lnx, lny)- log and natural log are both fine!
- Check which transformation did a better job straightening:
 - Make a scatterplot of each transformation. Do LinReg a+bx to check your r for each. The stronger the r, the better.
 - Also do a residual plot for each transformation to see which better fits the data (for exponential trial: L1, RESID. For Power Law trial: L3, RESID)
 - If your first transformation was better than it's an underlying exponential function fitting your data. If the second transformation was better than it's a power model.
 - Find the regression equation for your original untransformed data:
 - If it was exponential, yhat = $(10^{a})(10^{b})^{x}$
 - If it was a power model, yhat = $(10^{a})(x^{b})$