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+ Section 12.1
Inference for Linear Regression

After this section, you should be able to…

 CHECK conditions for performing inference about the slope β of the 
population regression line

 CONSTRUCT and INTERPRET a confidence interval for the slope β 
of the population regression line

 PERFORM a significance test about the slope β of a population 
regression line

 INTERPRET computer output from a least-squares regression 
analysis

Learning Objectives
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+Inference for Linear R
egression

 Introduction

When a scatterplot shows a linear relationship between a 
quantitative explanatory variable x and a quantitative response 
variable y, we can use the least-squares line fitted to the data to 
predict y for a given value of x. If the data are a random sample 
from a larger population, we need statistical inference to answer 
questions like these:

• Is there really a linear relationship between x and y in the 
population, or could the pattern we see in the scatterplot plausibly 
happen just by chance?
• In the population, how much will the predicted value of y change 
for each increase of 1 unit in x? What’s the margin of error for this 
estimate?

In Section 12.1, we will learn how to estimate and test claims about the 
slope of the population (true) regression line that describes the 
relationship between two quantitative variables.
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+ Inference for Linear Regression

In Chapter 3, we examined data on eruptions of the Old Faithful geyser. 
Below is a scatterplot of the duration and interval of time until the next 
eruption for all 222 recorded eruptions in a single month. The least-
squares regression line for this population of data has been added to 
the graph. It has slope 10.36 and y-intercept 33.97. We call this the 
population regression line (or true regression line) because it uses 
all the observations that month.

Inference for Linear R
egression

  

Suppose we take an SRS of 20
eruptions from the population and
calculate the least - squares
regression line ˆ y  a bx for the
sample data. How does the slope
of the sample regression line
(also called the estimated 
regression line) relate to the slope
of the population regression line?
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+Sampling Distribution of b
Inference for Linear R

egression

The figures below show the results of taking three different SRSs of 20 Old 
Faithful eruptions in this month. Each graph displays the selected points and 
the LSRL for that sample.

Notice that the slopes of the sample regression 
lines – 10.2, 7.7, and 9.5 – vary quite a bit from 
the slope of the population regression line, 
10.36.
The pattern of variation in the slope b is 
described by its sampling distribution.
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+Sampling Distribution of b
Inference for Linear R

egression

Confidence intervals and significance tests about the slope of the population 
regression line are based on the sampling distribution of b, the slope of the 
sample regression line. 

Fathom software was used to simulate choosing 1000 
SRSs of n = 20 from the Old Faithful data, each time 
calculating the equation of the LSRL for the sample. 
The values of the slope b for the 1000 sample 
regression lines are plotted. Describe this approximate 
sampling distribution of b.

Shape: We can see that the distribution of  
b-values is roughly symmetric and unimodal. 
A Normal probability plot of these sample 
regression line slopes suggests that the 
approximate sampling distribution of b is 
close to Normal.

Center: The mean of the 1000 b-
values is 10.32. This value is quite 
close to the slope of the population 
(true) regression line, 10.36.

Spread: The standard deviation of the 
1000 b-values is 1.31. Later, we will see 
that the standard deviation of the sampling 
distribution of b is actually 1.30.
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+Condition for Regression Inference
Inference for Linear R

egression

The slope b and intercept a of the least-squares line are statistics. That is, we 
calculate them from the sample data. These statistics would take somewhat different 
values if we repeated the data production process. To do inference, think of a and b 
as estimates of unknown parameters α and β that describe the population of interest.

Suppose we have n observations on an explanatory variable x and a 
response variable y. Our goal is to study or predict the behavior of y for 
given values of x.
•  Linear The (true) relationship between x and y is linear. For any fixed 
value of x, the mean response µy falls on the population (true) regression 
line µy= α + βx. The slope b and intercept a are usually unknown 
parameters.
•  Independent Individual observations are independent of each other.
•  Normal For any fixed value of x, the response y varies according to a 
Normal distribution.
•  Equal variance The standard deviation of y (call it σ) is the same for all 
values of x. The common standard deviation σ is usually an unknown 
parameter.
•  Random The data come from a well-designed random sample or 
randomized experiment.

Conditions for Regression Inference
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+Condition for Regression Inference
Inference for Linear R

egression

The figure below shows the regression model when the conditions are 
met. The line in the figure is the population regression line µy= α + βx.

The Normal curves show 
how y will vary when x is 
held fixed at different values. 
All the curves have the same 
standard deviation σ, so the 
variability of y is the same for 
all values of x. 

The value of σ determines 
whether the points fall close 
to the population regression 
line (small σ) or are widely 
scattered (large σ).

For each possible value 
of the explanatory 
variable x, the mean of 
the responses µ(y | x) 
moves along this line. 
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+How to Check the Conditions for Inference
Inference for Linear R

egression

You should always check the conditions before doing inference about the 
regression model. Although the conditions for regression inference are a bit 
complicated, it is not hard to check for major violations.

Start by making a histogram or Normal probability plot of the residuals and also a 
residual plot. Here’s a summary of how to check the conditions one by one.

•  Linear Examine the scatterplot to check that the overall pattern is roughly linear. 
Look for curved patterns in the residual plot. Check to see that the residuals 
center on the “residual = 0” line at each x-value in the residual plot.

•  Independent Look at how the data were produced. Random sampling and 
random assignment help ensure the independence of individual observations. If 
sampling is done without replacement, remember to check that the population is 
at least 10 times as large as the sample (10% condition).

•  Normal Make a stemplot, histogram, or Normal probability plot of the residuals 
and check for clear skewness or other major departures from Normality.

•  Equal variance Look at the scatter of the residuals above and below the 
“residual = 0” line in the residual plot. The amount of scatter should be roughly 
the same from the smallest to the largest x-value.

•  Random See if the data were produced by random sampling or a randomized 
experiment.

How to Check the Conditions for Regression Inference
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+Example: The Helicopter Experiment
Inference for Linear R

egression

Mrs. Barrett’s class did a variation of the helicopter experiment on page 738. Students 
randomly assigned 14 helicopters to each of five drop heights: 152 centimeters (cm), 203 cm, 
254 cm, 307 cm, and 442 cm. Teams of students released the 70 helicopters in a 
predetermined random order and measured the flight times in seconds. The class used 
Minitab to carry out a least-squares regression analysis for these data. A scatterplot, residual 
plot, histogram, and Normal probability plot of the residuals are shown below.

 Linear The scatterplot shows a clear linear 
form. For each drop height used in the 
experiment, the residuals are centered on the 
horizontal line at 0. The residual plot shows a 
random scatter about the horizontal line.  Independent Because the helicopters were 

released in a random order and no helicopter was 
used twice, knowing the result of one observation 
should give no additional information about 
another observation.

 Normal The histogram of the residuals is 
single-peaked, unimodal, and somewhat bell-
shaped. In addition, the Normal probability plot is 
very close to linear.

 Equal variance The residual plot shows a 
similar amount of scatter about the residual = 0 
line for the 152, 203, 254, and 442 cm drop 
heights. Flight times (and the corresponding 
residuals) seem to vary more for the helicopters 
that were dropped from a height of 307 cm.

 Random The helicopters were randomly assigned to 
the five possible drop heights.

Except for a slight concern about the equal-variance condition, we should be 
safe performing inference about the regression model in this setting.
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+Estimating the Parameters
Inference for Linear R

egression

When the conditions are met, we can do inference about the regression 
model µy = α+ βx. The first step is to estimate the unknown parameters.

If we calculate the least-squares regression line, the slope b is an 
unbiased estimator of the population slope β, and the y-intercept a is 
an unbiased estimator of the population y-intercept α.
The remaining parameter is the standard deviation σ, which 
describes the variability of the response y about the population 
regression line.

The LSRL computed from the sample data estimates the population 
regression line. So the residuals estimate how much y varies about the 
population line.
Because σ is the standard deviation of responses about the population 
regression line, we estimate it by the standard deviation of the residuals

  
s 

residuals2
n  2


(yi  ˆ y i)

2
n  2
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+Example: The Helicopter Experiment
Inference for Linear R

egression

Computer output from the least-squares regression analysis on the helicopter data for Mrs. 
Barrett’s class is shown below.

  

The least - squares regression line for these data is

flight time = -0.03761+ 0.0057244(drop height)

Our estimate for the standard deviation σ of flight times about the true 
regression line at each x-value is s = 0.168 seconds.
This is also the size of a typical prediction error if we use the least-squares 
regression line to predict the flight time of a helicopter from its drop height.
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+Example: The Helicopter Experiment
Inference for Linear R

egression

  

The least - squares regression line for these data is

flight  time = -0 .03761 + 0 .0057244 (drop  height )

The slope β of the true regression line says how much the average flight 
time of the paper helicopters increases when the drop height increases by 
1 centimeter.
Because b = 0.0057244 estimates the unknown β, we estimate that, on 
average, flight time increases by about 0.0057244 seconds for each 
additional centimeter of drop height.

We need the intercept a = -0.03761 to draw the line and make predictions, 
but it has no statistical meaning in this example. No helicopter was dropped 
from less than 150 cm, so we have no data near x = 0.
We might expect the actual y-intercept α of the true regression line to be 0 
because it should take no time for a helicopter to fall no distance.
The y-intercept of the sample regression line is -0.03761, which is pretty 
close to 0.
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+ The Sampling Distribution of b
Inference for Linear R

egression

  
Spread :   b 


sx n 1


6.159

1.083 20 1
1.30

Let’s return to our earlier exploration of Old Faithful eruptions. For all 222 eruptions 
in a single month, the population regression line for predicting the interval of time 
until the next eruption y from the duration of the previous eruption x is µy = 33.97 + 
10.36x. The standard deviation of responses about this line is given by σ = 6.159. 

If we take all possible SRSs of 20 eruptions 
from the population, we get the actual 
sampling distribution of b.

Shape: Normal

Center : µb = β = 10.36 (b is an unbiased 
estimator of β)

In practice, we don’t know σ for the population regression line. So we estimate it 
with the standard deviation of the residuals, s. Then we estimate the spread of 
the sampling distribution of b with the standard error of the slope:

SEb 
s

sx n 1
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+ The Sampling Distribution of b
Inference for Linear R

egression

What happens if we transform the values of b by standardizing? Since the 
sampling distribution of b is Normal, the statistic

has the standard Normal distribution.
z 

b  
 b

Replacing the standard deviation σb of the sampling distribution with its standard 
error gives the statistic

which has a t distribution with n - 2 degrees of freedom.

t 
b  
SEb

The figure shows the result of 
standardizing the values in the sampling 
distribution of b from the Old Faithful 
example. Recall, n = 20 for this example.

The superimposed curve is a t 
distribution with df = 20 – 2 = 18.
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+Constructing a Confidence Interval for the Slope
Inference for Linear R

egression

The slope β of the population (true) regression line µy = α + βx is the rate of change 
of the mean response as the explanatory variable increases. We often want to 
estimate β. The slope b of the sample regression line is our point estimate for β. A 
confidence interval is more useful than the point estimate because it shows how 
precise the estimate b is likely to be. The confidence interval for β has the familiar 
form

statistic ± (critical value) · (standard deviation of statistic)

When the conditions for regression inference are met, a level C confidence interval for 
the slope βof the population (true) regression line is

b ± t* SEb

In this formula, the standard error of the slope is

and t* is the critical value for the t distribution with df = n - 2 having area C between -t* 
and t*.

t Interval for the Slope of a Least-Squares Regression Line

SEb 
s

sx n 1

Because we use the statistic b as our estimate, the confidence interval is

b ± t* SEb
We call this a t interval for the slope. 
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+Example: Helicopter Experiment
Inference for Linear R

egression

Earlier, we used Minitab to perform a least-squares regression analysis on the helicopter data for 
Mrs. Barrett’s class. Recall that the data came from dropping 70 paper helicopters from various 
heights and measuring the flight times. We checked conditions for performing inference earlier. 
Construct and interpret a 95% confidence interval for the slope of the population regression line.

SEb = 0.0002018, from the “SE Coef ” column in the computer output. 
Because the conditions are met, we can calculate a t interval for the slope β 
based on a t distribution with df = n - 2 = 70 - 2 = 68. Using the more 
conservative df = 60 from Table B gives t* = 2.000. 
The 95% confidence interval is

b ± t* SEb = 0.0057244 ± 2.000(0.0002018) 
= 0.0057244 ± 0.0004036 
= (0.0053208, 0.0061280)

We are 95% confident that the interval from 0.0053208 to 0.0061280 seconds 
per cm captures the slope of the true regression line relating the flight time y and 
drop height x of paper helicopters.
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+Example: Does Fidgeting Keep you Slim?
Inference for Linear R

egression

In Chapter 3, we examined data from a study that investigated why some people don’t gain 
weight even when they overeat. Perhaps fidgeting and other “nonexercise activity” (NEA) 
explains why. Researchers deliberately overfed a random sample of 16 healthy young adults for 
8 weeks. They measured fat gain (in kilograms) and change in energy use (in calories) from 
activity other than deliberate exercise for each subject. Here are the data:

Construct and interpret a 90% confidence interval for the slope of the 
population regression line.
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+Example: Does Fidgeting Keep you Slim?
Inference for Linear R

egression

State: We want to estimate the true slope β of the population regression line 
relating NEA change to fat gain at the 90% confidence level.

Plan: If the conditions are met, we will use a t interval for the slope to estimate β. 
•  Linear The scatterplot shows a clear linear pattern. Also, the residual plot shows a 
random scatter of points about the “residual = 0” line.

•  Independent Individual observations of fat gain should be independent if the study is 
carried out properly. Because researchers sampled without replacement, there have to 
be at least 10(16) = 160 healthy young adults in the population of interest.
•  Normal The histogram of the residuals is roughly symmetric and single-peaked, so 
there are no obvious departures from normality.
• Equal variance It is hard to tell from so few points whether the scatter of points 
around the residual = 0 line is about the same at all x-values.
•  Random The subjects in this study were randomly selected to participate.
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+Example: Does Fidgeting Keep you Slim?
Inference for Linear R

egression

Do: We use the t distribution with 16 - 2 = 14 degrees of freedom to find the 
critical value. For a 90% confidence level, the critical value is t* = 1.761. So 
the 90% confidence interval for β is

Conclude: We are 90% confident 
that the interval from -0.004747 to
-0.002136 kg captures the actual 
slope of the population regression 
line relating NEA change to fat gain 
for healthy young adults.

b ± t* SEb = −0.0034415 ± 1.761(0.0007414)
= −0.0034415 ± 0.0013056
= (−0.004747,−0.002136)
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+Performing a Significance Test for the Slope
Inference for Linear R

egression

When the conditions for inference are met, we can use the slope b of the 
sample regression line to construct a confidence interval for the slope β of 
the population (true) regression line. We can also perform a significance 
test to determine whether a specified value of β is plausible. The null 
hypothesis has the general form H0: β = hypothesized value. To do a test, 
standardize b to get the test statistic:

  

test statistic =  
statistic - parameter

standard deviation of statistic

t 
b  0

SEb

To find the P-value, use a t distribution with n - 2 degrees of freedom. Here 
are the details for the t test for the slope.

Suppose the conditions for inference are met. To test the hypothesis H0 : β = 
hypothesized value, compute the test statistic

Find the P-value by calculating the probability of getting a t statistic this large 
or larger in the direction specified by the alternative hypothesis Ha. Use the t 
distribution with df = n - 2.

t Test for the Slope of a Least-Squares Regression Line

t 
b  0

SEb
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+Example: Crying and IQ
Inference for Linear R

egression

Infants who cry easily may be more easily stimulated than others. This may be a sign of higher 
IQ. Child development researchers explored the relationship between the crying of infants 4 to 
10 days old and their later IQ test scores. A snap of a rubber band on the sole of the foot caused 
the infants to cry. The researchers recorded the crying and measured its intensity by the number 
of peaks in the most active 20 seconds. They later measured the children’s IQ at age three years 
using the Stanford-Binet IQ test. A scatterplot and Minitab output for the data from a random 
sample of 38 infants is below.

Do these data provide convincing evidence that there is a positive linear 
relationship between crying counts and IQ in the population of infants?
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+Example: Crying and IQ
Inference for Linear R

egression

State: We want to perform a test of
H0 : β = 0 
Ha : β > 0

where β is the true slope of the population regression line relating crying count to IQ 
score. No significance level was given, so we’ll use α = 0.05.

Plan: If the conditions are met, we will perform a t test for the slope β. 
•  Linear The scatterplot suggests a moderately weak positive linear relationship between crying 
peaks and IQ. The residual plot shows a random scatter of points about the residual = 0 line.

•  Independent Later IQ scores of individual infants should be independent. Due to sampling 
without replacement, there have to be at least 10(38) = 380 infants in the population from which 
these children were selected.
•  Normal The Normal probability plot of the residuals shows a slight curvature, which suggests that 
the responses may not be Normally distributed about the line at each x-value. With such a large 
sample size (n = 38), however, the t procedures are robust against departures from Normality.
• Equal variance The residual plot shows a fairly equal amount of scatter around the horizontal line 
at 0 for all x-values.
•  Random We are told that these 38 infants were randomly selected.

23



+Example: Crying and IQ
Inference for Linear R

egression

Do: With no obvious violations of the conditions, we proceed to inference. 
The test statistic and P-value can be found in the Minitab output.

Conclude: The P-value, 0.002, is less than our α = 0.05 significance level, so we 
have enough evidence to reject H0 and conclude that there is a positive linear 
relationship between intensity of crying and IQ score in the population of infants.

t 
b  0

SEb


1.4929  0

0.4870
 3.07

The Minitab output gives P = 0.004 as the 
P-value for a two-sided test. The P-value 
for the one-sided test is half of this,
P = 0.002.
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+ Section 12.1
Inference for Linear Regression

In this section, we learned that…

 Least-squares regression fits a straight line to data to predict a response 
variable y from an explanatory variable x. Inference in this setting uses the 
sample regression line to estimate or test a claim about the population 
(true) regression line.

 The conditions for regression inference are
•Linear The true relationship between x and y is linear. For any fixed value of 

x, the mean response µy falls on the population (true) regression line µy = α 
+ βx.

•Independent Individual observations are independent. 
•Normal For any fixed value of x, the response y varies according to a Normal 

distribution. 
•Equal variance The standard deviation of y (call it σ) is the same for all 

values of x. 
•Random The data are produced from a well-designed random sample or 

randomized experiment.

Summary
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+ Section 12.1
Inference for Linear Regression

 The slope b and intercept a of the least-squares line estimate the slope 
β and intercept α of the population (true) regression line. To estimate σ, 
use the standard deviation s of the residuals.

 Confidence intervals and significance tests for the slope β of the 
population regression line are based on a t distribution with n - 2 
degrees of freedom.

 The t interval for the slope β has the form b ± t*SEb, where the 
standard error of the slope is

 To test the null hypothesis H0 : β = hypothesized value, carry out a t 
test for the slope. This test uses the statistic 

 The most common null hypothesis is H0 : β = 0, which says that there is 
no linear relationship between x and y in the population.

Summary

SEb 
s

sx n 1

t 
b  0

SEb
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