Birds in the trees Researchers studied the behavior of birds that were searching for seeds and insects in an Oregon forest. In this forest, 54% of the trees were Douglas firs, 40% were ponderosa pines, and 6% were other types of trees. At a randomly selected time during the day, the researchers observed 156 red-breasted nuthatches: 70 were seen in Douglas firs, 79 in ponderosa pines, and 7 in other types of trees. ${ }^{2}$ Do these data suggest that nuthatches prefer particular types of trees when they're searching for seeds and insects? Carry out a chi-square goodness-of-fit test to help answer this question.
(11.) Benford's law Faked numbers in tax returns, invoices, or expense account claims often display patterns that aren't present in legitimate records. Some patterns are obvious and easily avoided by a clever crook. Others are more subtle. It is a striking fact that the first digits of numbers in legitimate records often follow a model known as Benford's law. ${ }^{3}$ Call the first digit of a randomly chosen record X for short. Benford's law gives this probability model for X (note that a first digit can't be 0):

First digit (X): $1 \begin{array}{lllllllll}2 & 2 & 3 & + & 5 & 6 & 7 & 8 & 9\end{array}$
Probability: $0.3010 .1760 .1250 .0970 .0790 .0670 .0580 .0510 .046-1$
A forensic accountant who is familiar with Benford's law inspects a random sample of 250 invoices from a company that is accused of committing fraud. The table below displays the sample data.

(a) Are these data inconsistent with Benford's law? Carry out an appropriate test at the $\alpha=0.05$ level to support your answer. If you find a significant result, perform a follow-up analysis.
(b) Describe a Type I error and a Type II error in this setting, and give a possible consequence of each. Which do you think is more serious?

Explain carefully why it would not be appropriate to perform a chi-square goodness-of-fit test using these x^{2} is not appropriate because
the dit collected is NJT Counts Gut average amount of time spent on HW.
(17.) Mendel and the peas Gregor Mendel (1822-1884), an Austrian monk, is considered the father of genetics. Mendel studied the inheritance of various traits in pea plants. One such trait is whether the pea is smooth or wrinkled. Mendel predicted a ratio of 3 smooth peas for every 1 wrinkled pea. In one experiment, he observed 423 smooth and 133 wrinkled peas. The data were produced in such a way that the Random and Independent conditions are met. Carry out a chi-square goodness-of-fit test based on Mendel's prediction. What do you conclude?

$$
L 3=L 1 * 250
$$

| $12,1 B$ | | |
| :--- | :--- | :--- | :--- | :--- |

TEST: x^{2} GOODNESS OF FIT TEST FUR $\alpha=.05$
Hypothesis $\quad P_{t}=$ true proportion of trees in forest

$$
H_{0}: P_{\text {firs }}=.54 \quad P_{\text {pines }}=.40 \quad \text { Porte }=.06
$$

H_{A} : At least one of the P_{t} 's is iniurreat
Conditions
Random - a random 5 cmple was used
Independent - recsuncble $156(10)=1.560$ red breasted nut hatches
Large simple size- The expected counts in each category was greater than $5(84.24,62.4,9.36)$
8.418

Mechanics $x^{2}=7.418 \quad d f=2$

$$
\text { puclue } \rightarrow P\left(x^{2} \geqslant 7.418\right)=x 2_{c d f}(2.418, E 99,2)=.0245
$$

Conclude: Since the puclue (.0245) 2.05, We Reject H_{0}. and conclude these birds prefer particular types of trees when they are searching for food.
12.1 BHW
(9) Seehandout
(ii)

Poigit $=$ true proportion of Benford'slaw digit
H_{0} :

$$
\begin{array}{lllll}
p_{1}=.301 & p_{3}=.125 & p_{5}=.079 & p_{7}=.058 & p_{9}=.046 \\
p_{2}=.176 & p_{4}=.097 & p_{6}=.067 & p_{8}=.051 &
\end{array}
$$

H_{A} : at least one of the Paigits is incorrect
STATE TEST: CHI SQUARE $\left(x^{2}\right)$ Goodness of fit test

$$
\alpha=.05
$$

Conditions

Random - random sample of 250 invoices
Independent - reasonable their are $10(250)=2500$ invoices Large sample size - The expected counts at the company are of least 5:
must Give $\longrightarrow 75.25,44,31.25,24.25,19.75,16.75,14,50,12.75,11.5$ all expected
counts and round Mechanics: 2 decimals

$$
\begin{aligned}
& x^{2}=\sum \frac{\text { (abserved-Expected })^{2}}{\text { Expected }}=\frac{(61-75.25)^{2}}{75.25}+\ldots+\frac{(6-11.5)^{2}}{11.5} \\
& \text { Con show Hst +105t }
\end{aligned} \quad d f=8 \quad \begin{aligned}
& x^{2}=21.563 \quad \text { pralue }=P\left(x^{2} \geqslant 21.563\right)=x^{2} .0 f(21.563, E 99,8)=.0058
\end{aligned}
$$

Conclude: Since the puclue is less than 005 , we reject H_{0} and conclude that the invoices are inconsistent with Benford's Law

$$
\sqrt{12.1 \mathrm{~B} \mathrm{HW}}
$$

\#ll cont
(A) Followup

(11B) TYPE I ERRUR: SAYS THAT THE COMPANY'S invoices DID NOT FOLLOW BENFOZDIS LAW (SUGGESTINC FRAUD) WHEN in FACT THEY WERE CONSISTENT WITH Benfora's Law.

Type II error: Says that The invoices were CONSISTENTS WITH BENFORD'S LAW (SUGGESTING FRAUD) WHEN IN FACT They Weak NJT.

A TYPE I ERROR WOULD BE MORE SERIOUS HERE, ALLEGING THAT THE CompANY HAO Committed Fraud WHEN IT HAD NOT
$\sqrt{12.1 \text { B KW }}$

17 Test: x^{2} goodness-ot-fit test $\alpha=.05$

$$
H_{0}: P_{\text {smoont }}=.75 \quad P_{\text {Wrinkled }}=.25
$$

H_{A} : AT LEAST ONE OF THE P_{i} 'S is incorrect.
Conditions
Random and Independent Conditions were given Large enough sample size-

The expected counts 417 and 139 are both greater then 5 .

Mechanics

$$
\begin{aligned}
& x^{2}=, 352 \quad d f=1 \\
& P V A L U E=P\left(x^{2} \geq .342\right)=x_{c d} f(.3452, E 99,1)=.5568
\end{aligned}
$$

Conclude:
Since the puclue is very large and greater than .05 , we fail to reject Ho. We do not have enough evidence to dispute mendel's belief.

