AP Statistics – 9.2b	Name:
Goal: 2-Sided TOH and CI for Population Proportion (p)	Date:

I. 2-Sided Test of Significance for Proportions -- Example #3 "Benford's law and fraud"

When the accounting firm AJL and Associates audits a company's financial records for fraud, they often use a test based on Benford's law. Benford's law states that the distribution of first digits in many real-life sources of data is not uniform. In fact, when there is no fraud, about 30.1% of the numbers in financial records begin with the digit 1. However, if the proportion of first digits that are 1 is significantly different from 0.301 in a random sample of records, AJL and Associates does a much more thorough investigation of the company. Suppose that a random sample of 300 expenses from a company's financial records results in only 68 expenses that begin with the digit 1. Should AJL and Associates do a more thorough investigation of this company?

• Parameter of Interest p = the true proportion of expenses that begin with the digit 1

• Level of Significance $\alpha = 0.05$ significance level

• Choice of Test one-sample z test for p

• Null Hypothesis $H_0: p = 0.301$

• Alternative Hypothesis $H_a: p \neq 0.301$

- Conditions of Test
 - Random: A random sample of expenses was selected.
 - Independent: It is reasonable to assume that there are more than 10(300) = 3000 expenses in this company's financial records.
 - Normal: $np_0 = (300)(0.301) = 90.3 \ge 10$, $n(1-p_0) = (300)(1-0.301) = 209.7 \ge 10$.
- Sampling Distribution (Sketch of the sampling distribution of the sample statistic under the null hypothesis, indicating the mean)

• Test Statistic (clearly show calculation)

Test statistic:
$$z = \frac{0.227 - 0.301}{\sqrt{0.301(1 - 0.301)}} = -2.79$$

- **P-value** (Use correct probability notation.) **P-value**: P(z < -2.79) = 0.0026normalcdf(-e99,-2.79,0,1) = 0.0026 * 2 = 0.0052
- Meaning of the P-value (Reject or Fail to reject null hypothesis) AND Conclusions (in context)
 - Since the *P*-value (0.0052) is less than α =.05, we reject the null hypothesis.
 - There is convincing evidence that the proportion of expenses that have first digit of 1 is not 0.301. Therefore, AJL and Associates should do a more thorough investigation of this company.

II. Confidence Interval for Proportions -- Example #4 "Benford's law and fraud(continued)"

<u>Problem</u>: Find and interpret an appropriate confidence interval for the true proportion of expenses that begin with the digit 1 for the company in the previous alternate example. Use your interval from (a) to decide whether this company should be investigated for fraud.

- Parameter of Interest p = the true proportion of expenses that begin with the digit 1
- Level of Significance $\alpha = 0.05 \rightarrow 95\%$ confidence level
- Choice of Test 1-sample z interval for p
- Conditions of Test
 - Random: A random sample of expenses was selected.
 - Normal: $n\hat{p} = 68 \ge 10$ and $n(1-\hat{p}) = 232 \ge 10$
 - Independent: It is reasonable to assume that there are more than 10(300) = 3000 expenses in this company's financial records.
- Sampling Distribution (Sketch of the sampling distribution of the sample statistic under the null hypothesis, indicating the mean)

• Confidence Interval (clearly show calculation)

$$\hat{p} \pm z * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.227 \pm 1.96 \sqrt{\frac{0.227(1-0.227)}{300}} = 0.227 \pm 0.047 = (0.180, 0.274)$$

- Interpret the confidence interval
 - Conclude: We are 95% confident that the interval from 0.180 to 0.274 captures the true proportion of expenses at this company that begin with the digit 1.
- Use your interval to decide whether this company should be investigated for fraud.
 - Since 0.301 is not in the interval from, 0.301 is not a plausible value for the true proportion of expenses that begin with the digit 1, we reject Ho. Thus, this company should be investigated for fraud.
- III. CYU page 558 2-sided Test (recommend using yellow sheet) Fair To Reject Ho

IV. CYU – page 561 – Interpret Confidence Interval

we are 95% confident that the true propurtion is between .58 and .77. Since this confidence interval includes our population parameter (.75), our decision would be the same "Fail to Reject"

Page 563 – Compare the differences between doing a TOH(#50) versus CI (#52)

① We can use both TOH and CI to make significance decisions
② CI gives more in formation since it provides all the plausible values for the population parameter.

Test of Significance Template

Parameter of Interest	P=actual Proportion of restaurant workers who say work stress has a negative impact		
Choice of Test	1-Sample ZTest for a Proportion		
Level of Significance	d=.05 (since not given)		
Null Hypothesis	Ho: p=.75		
Alternative Hypothesis	Ha: P = .75		
Conditions of Test	Random - SRS n=100 Independent - It is very likely there at least 10 (100) = 1,000 restaurent workers Normal - n p = 68>10 V n(1-p)=32>10V		
Sampling Distribution	Sketch of the sampling distribution of the sample statistic under the null hypothesis, indicating the mean: $ h = 100 $ $ \hat{P} = \frac{68}{100} = .68 $ Puolue = .053		
Test Statistic	Formula: Plug-ins & Value: $Z = \frac{.6875}{\sqrt{(.75)(.25)}} = -1.62$		
P-value	Use correct probability notation. Puclue = $P(Z < -1.62) = .053 \times 2 = .106$		
Meaning of the P-value	Since the puclue (.106) is large and greater than d=.05, WE FALL TO REJECT Ho		
Conclusions	Reject null hypothesis Fall to reject null hypothesis English: We do not have sofficient evidence to say that the employees at this restaurant differs from the national average		

9.2 page 563

COMPARE TOHVS CI

Test of Significance Template

(
J "	#52	CI

1	150 TOH VIEST OF SIGNIFICANCE LEN	nplate #52 CI
Parameter of Interest	P=true Proportion of 1st year being very well	college students
Choice of Test	1 Sample Ztest for a proportion	1 Semple Z-interval
Level of Significance	d=.05	95% confidence level
Null Hypothesis	Ho: P=.73	
Alternative Hypothesis	H_{A} : $P \neq .73$	
	Rendom: SRS n= 200	Rendom: same
Conditions of	Independent: Reasonable there	Independent: Same
Test	are more than 10(200) = 2,000	Normal:
	Normal : np = ,73 (200) = 146 > 10/	np=132710V
	n(i-p) = .27(200) = .75(200)	n(1-p)= 68>10V
	Sketch of the sampling distribution of the sample st	tatistic under the null hypothesis, indicating
Sampling Distribution	the mean: Ho prolue	A = .66
	P= 132 = 66 173	Z*=1.9L
	Formula: Plug-ins & Value Z = .667373	166 ± 1.96 (66)(34)
Test Statistic	$Z = \frac{1}{\sqrt{(13)(123)}} = -2.23$	166±.066 (.594,.726)
P-value	Use correct probability notation.	
r-value	P(Z= -2.23) =.013 x 2 = ,026	
Meaning of	Since the puctue (.026) is	
the P-value	less than d = .05, We reject	
	the null hypothesis	
	Reject null hypothesis	* Resect Ho
	Fail to reject null hypothesis	
Conclusions	English: We reject to and	we are 95% confident that the
	conclude that the	true population parameter is
		between , 59t and ,726. Since
	Student at this college	the population parameter (,73)
	think that being well off fells out side the Confidence	
differs from the interval, we can reject to.		
	national average.	