Chapter 6 AP Statistics PRACTICE Test

Section I: Multiple Choice Select the best answer for each question.

Questions T6.1 and T6.2 refer to the following setting. A psychologist studied the number of puzzles that subjects were able to solve in a five-minute period while listening to soothing music. Let X be the number of puzzles completed successfully by a subject. The psychologist found that X. had the following probability distribution:

Value of X:	1	2	3	4
Probability:	0.2	0.4	0.3	0:1
Tipi	12	8	.9	14

T6.1.\What is the probability that a randomly chosen subject completes at least 3 puzzles in the five-minute period while listening to soothing music?

- (a) 0.3
- (b) 0.4
- (c) 0.6

- (d) 0.9
- (e) Cannot be determined

T6.2.\ Suppose that three randomly selected subjects solve puzzles for five minutes each. The expected value of the total number of puzzles solved by the three subjects is

- (b) 2.3.
- (c) 2.5. ((d) 6.9.)

$$E(x) = \sum_{x \in P_1} = .2 + .8 + .9 + .4 = 2.3$$

 $E(3 \text{ Subjects}) = 2.3 + 2.3 + 2.3 = 6.9$

TT6.3.\ Suppose a student is randomly selected from your school. Which of the following pairs of random variables are most likely independent?

- (a) X = student's height; Y = student's weight
- (b) $X = \text{student's } IQ; Y = \text{student's } GPA^{NOT}$
- (c) X = student's PSAT Math score; Y = student's PSATVerbal score MOTIND
- (d) X = average amount of homework the student does per night; Y = student's GPA NOT 140
- (e) X = average amount of homework the student does per night; Y = student's height | NOEPENDENT - ON E

DOES NOT INFLUENCE THE OTHER

T6.4.\A certain vending machine offers 20-ounce bottles of soda for \$1.50. The number of bottles X bought from the machine on any day is a random variable with mean 50 and standard deviation 15. Let the random variable Y equal the total revenue from this machine on a given day. Assume that the machine works properly and that no sodas are stolen from the machine. What are the mean and standard deviation of Y?

(a)
$$\mu_Y = $1.50$$
, $\sigma_Y = 22.50

(b)
$$\mu_Y = $1.50, \sigma_Y = $33.75$$

(c)
$$\mu_Y = $75$$
, $\sigma_Y = 18.37

(d)
$$\mu_{\rm Y} = $75$$
, $\sigma_{\rm Y} = 22.50

(e)
$$\mu_Y = $75$$
, $\sigma_Y = 33.75

$$Ly = 50 * 1.5 = $75$$

$$6y = 15 * 1.5 = $22.50$$

Questions T6.5 and T6.6 refer to the following setting. The weight of tomatoes chosen at random from a bin at the farmer's market is a random variable with mean $\mu=10$ ounces and standard deviation $\sigma=1$ ounce. Suppose we pick four tomatoes at random from the bin and find their total weight T.

T6.5. The random variable T has a mean of

(a) 2.5 ounces.

(d) 40 ounces.

(b) 4 ounces.

(e) 41 ounces.

(c) 10 ounces.

T6.6. The random variable T has a standard deviati ounces) of

(a) 0.25.

(b) 0.50.

(c) 0.71. (d) 2.

$$\sqrt{1^2 + 1^2 + 1^2 + 1^2} = \sqrt{4}$$

n=.001224

T6.9.1 The figure shows the probability distribution of a discrete random variable-X. Which of the following best describes this random variable?

T6.7. Which of the following random variables is geometric?

(a) The number of times I have to roll a die to get two 6s.

(b) The number of cards I deal from a well-shuffled deck of 52 cards until I get a heart.

(c) The number of digits I read in a randomly selected row of the random digits table until I find a 7. LOOKING FOR THE IST

(d) The number of 7s in a row of 40 random digits. Occurred 4 7

(e) The number of 6s I get if I roll a die 10 times.

T6.8. Seventeen people have been exposed to a particular disease. Each one independently has a 40% chance of contracting the disease. A hospital has the capacity to handle 10 cases of the disease. What is the probability that the hospital's capacity will be exceeded?

(a) 0.011 (b) 0.035 (c) 0.092 (d) 0.965 (e) 0.989

(a) Binomial with n = 8, p = 0.1

max<H

P1:L1,L2

(b) Binomial with n = 8, p = 0.3

(c) Binomial with n = 8, p = 0.8

(d) Geometric with p = 0.1

(e) Geometric with p = 0.2

Geometricis typically stewed

$$P(X>10) = 1 - P(X \le 10)$$

 $1 - .965 = .0348$
binomclf(17, .4, 10) = .965

T6.10. A test for extrasensory perception (ESP) involves asking a person to tell which of 5 shapes—a circle, star, triangle, diamond, or heart—appears on a hidden computer screen. On each trial, the computer is equally likely to select any of the 5 shapes. Suppose researchers are testing a person who does not have ESP and so is just guessing on each trial. What is the probability that the person guesses the first 4 shapes incorrectly but gets the fifth correct?

(d)
$$\binom{5}{1} \cdot \left(\frac{4}{5}\right)^4 \cdot \left(\frac{1}{5}\right)$$

(b)
$$\left(\frac{4}{5}\right)^4$$

(c)
$$\left(\frac{4}{5}\right)^4 - \left(\frac{1}{5}\right)$$

P(S) =
$$\frac{1}{5}$$

the P(F) = $\frac{4}{5}$
P(FFFS)

T6.11	V= have eas in 1 days contro
1 6.11	Y= broken eggs in 1 dozen carton
	@ P(atleast 10 eggs unbroken) = P(Y = 2)
	use the probability distribution for Y given:
	$P(Y \le 2) = P(Y=0) + P(Y=1) + P(Y=2)^{0}$
	Use the probability distribution for Y given: $P(Y \le 2) = P(Y=0) + P(Y=1) + P(Y=2)$ $.78 + .11 + .07 = .96$
_	(in context) There is a 96% Chance that 2 or
	fewer eggs are broken. That is there is a 96%
	Chance that at least 10 eggs are un broken in a
	Chance that at least 10 eggs are un broken in a randomly selected Carton of "store brand" eggs.
	b) $My = 0(.78) + 1(.11) + 2(.07) + 3(.03) + 4(.01) = .38$
	My=.38) (in context) We expect, on average, to find
	My=.38 (in context) We expect, on average, to find .38 broken eggs in a carton of a dozen eggs.
	6y=
	$C = \sum_{i=1}^{2} \sum_{j=1}^{2} (x_{i} - \mu_{x})^{2} p_{i} = \sum_{j=1}^{2} (x_{j} - \mu_{x})^{2} p_{j} = \sum_{j=1}^{2} (x_{j} - \mu_{x})^$
	Show either forwark IN CALCY L1= Yi's
-	1VAL STATS
-	(incontext) Individual cartons will FREQUIST: LZ
_	Vary from ,38 boken eggs by
	Vary from .38 broken eggs by about .82 broken eggs, on average \$\frac{2}{2}\times \ln \times \frac{1}{2}\times \ln \frac{1}{2}\times \fr
	99,
<u> </u>	
	Cont-

```
T6.11d
1ST FIND: P (at least 2 broken eggs) = P(Y=2)+P(Y=3)+P(Y=4)
P(Y>2)=.07+.03+.01=.11
ZND- Notice this is a geometric probability because you are looking for the 1 st
     broken EGG.
  Check Geom. Conditions
                                                          STATE THE
 B - broken/NOT broken
                                                           Distribution with
I - eggs independent

T - 1st broken egg

S - fixed prob success p=.11
                                                        either G(.11) or
                                                         geometric distribution
                                                                with p=. 11
3rd-find the probability for G(.11)

1st Broken egg found in one of first B cortens.

P(Y \leq 3) = (.2950)
                                Geomet cdf (.11,3)
474
 (context) The probability of finding at least 2 broken eggs in one of the first 3 random by to selected contens is about 30%
```

X= the number of owners who great their day first T6.12) a X is a binomial random variable because it meets the required conditions B- own greets dog first or desNOT.

I - dog owners are independent

N - fixed tricls n=12

S - fixed probability of success P=.6L binomedf(12, 66, 4) Not Needed (b) P(Y 44) = .0213 remember to state model B(n,p) = B(12,.66) Context) We found the probability of getting a sample of 4 or fewer dog owners greating their dogs first when they get home is only about 2%. This is reasonable unlikely to occur, so we would be skeptical that the "Ladies Home Journal's" claim is true.

T6.13 define RV'S E = amount of time to complete HW -> N (25,5) A = amount of time for Adelaide

to complete Hw > N (50,10) RV: D=A-E (a) E(A-E)=10= 50-25 = (25 minutes) VAR (A-E) = 62 = 52 + 102 = 125 + Assuming SD (A-E) = CD = 1125 by Ed and Adeloide is = 11.18 minutes independent FIND P(E)A) Use your algebra skills to tework this Probability to

Use the RV D=A-E" Calculated P(O>A-E) above P(A-E(O) = P(D(O) STATE model N(25, 11.18) Sketch Groph D(Dro) P(D(0) = (01 267) normaled+ (-E99,0, 25,11.18) (Context) The probability that Ed will spend more time on home work than Adelaide is very small, about 1.3%.

T6.14 Census Bureau 13% Hispanic adults Poll - SRS n = 1,200 adults X= the number of hispanic adults (2) model B(1200,.13) 1) Binomial Model Conditions B= Hispania or NOT (3) E(x)=Ux=np=1200(.13) I = SRS N = Fixed tricls n=1,200 /lex = 156/ 5 = Fixed prob success p = .13 (4) SD(x) = Inp(1-0) = /1200(.13)(.87) 6x=11.65 (b) Suspicious it 15% of the sample is Hispenic 15% = 1200 (.15) = 180 Hispanics P(X>180) BINUMIEL Model method Normal Approximation model remember discrete RV model B (1200,.13) $P(x \ge 180) = | - P(x \le 179)$ State model = 1 - 9765 E(x)=np=156 binom clf (1200, .13, 179) 5D(x)= (1200(.13)(.87) = 11.56 = (0235)

P(x7,180) = (0189)

normalat (180, E99, 156, 11.56) random sample is

Check Normal condition np= 1200 (.13) = 156 > 10 V n (1-p)=1200(.87)=1,044 2/10 V N (156, 11.56)

> (Context) The probability that 15% of the Hispenic is very small (about 28)

Therefore we would be suspicious of the upinion poll-