Section 7.2
 Sample Proportions

Learning Objectives

After this section, you should be able to...
\checkmark FIND the mean and standard deviation of the sampling distribution of a sample proportion
\checkmark DETERMINE whether or not it is appropriate to use the Normal approximation to calculate probabilities involving the sample proportion
\checkmark CALCULATE probabilities involving the sample proportion
\checkmark EVALUATE a claim about a population proportion using the sampling distribution of the sample proportion

\square The Sampling Distribution for the Statistic \hat{p}

Consider the approximate sampling distributions generated by a simulation in which SRSs of Reese's Pieces are drawn from a population whose proportion of orange candies is 0.15 .

What happens to \hat{p} as the sample size increases from 25 to 50 ?
What do you notice about the shape, center, and spread?

How good is the statistic \hat{p} as an estimate of the parameter p ?
The sampling distribution of \hat{p} answers this question.

-The Sampling Distribution for the Statistic \hat{p}

You should have noticed the sampling distribution has the following characteristics for shape, center, and spread:

> Shape : In some cases, the sampling distribution of \hat{p} can be approximated by a Normal curve.This seems to depend on both the samplesize n and the population proportion p.

Center: The mean of the distribution is $\mu_{\hat{p}}=p$. This makes sense because the sample proportion \hat{p} is an unbiased estimator of p.

Spread: For a specific value of p, the standard deviation $\sigma_{\hat{p}}$ gets smaller as n gets larger. The value of $\sigma_{\hat{p}}$ depends on both n and p.

- The Connection between THE STATISTIC \hat{p} and a random variable X

There is an important connection between the sample proportion $\quad \hat{p} \quad$ and the number of "successes" for the random variable X in the sample.

$$
\hat{p}=\frac{\text { count of successes in sample }}{\text { size of sample }}=\frac{X}{n}
$$

REMEMBER: for a binomial random variable X, the mean and standard deviation are:

$$
\mu_{X}=n p \quad \sigma_{X}=\sqrt{n p(1-p)}
$$

Since $\hat{p}=X / n \longrightarrow$ THEN $\rightarrow \hat{p}=(1 / n) \cdot X$
we are just multiplying the random variable X by a constant ($1 / n$)
to get the random variable \hat{p}.
Now we can use algebra to calculate $\mu_{\hat{p}}$ and $\sigma_{\hat{p}}$

- The Connection between THE STATISTIC \hat{p} and a random variable X

Binomial random variable X are: $\quad \mu_{X}=n p \quad \sigma_{X}=\sqrt{n p(1-p)}$
Since $\hat{p}=X / n$ then $\hat{p}=(1 / n) \cdot X$

Therefore...

$$
\mu_{\hat{p}}=\frac{1}{n}(n p)=p \quad \hat{p} \text { is an unbiased estimator for } p
$$

$$
\sigma_{\hat{p}}=\frac{1}{n} \sqrt{n p(1-p)}=\sqrt{\frac{n p(1-p)}{n^{2}}}=\sqrt{\frac{p(1-p)}{n}}
$$

- Using the Normal Approximation for \hat{p}

Inferenceabout a population proportion p is
based on the sampling distribution of \hat{p}.
when the sample size is large enough.

You must check the following 2 conditions have been met
$n p \geq 10 \quad$ and
$n(1-p) \geq 10$
then the sampling distribution of \hat{p} is approximately Normal.

> We can summarize the facts about the sampling distribution of \hat{p} as follows:

Sampling Distribution of a Sample Proportion

Choose an SRS of size n from a population of size N with proportion p of successes. Let \hat{p} be the sample proportion of successes. Then:

The mean of the sampling distribution of \hat{p} is $\mu_{\hat{p}}=p$
The standard deviation of the sampling distribution of \hat{p} is

$$
\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}
$$

as long as the 10% condition is satisfied: $n \leq(1 / 10) N$.

As n increases, the sampling distribution becomes approximately Normal. Before you perform Normal calculations, check that the Normal condition is satisfied: $n p \geq$ 10 and $n(1-p) \geq 10$.

Example 1:

CHECK YOUR UNDERSTANDING

About 75\% of young adult Internet users (ages 18 to 29) watch online video. Suppose that a sample survey contacts an SRS of 1000 young adult Internet users and calculates the proportion \hat{p} in this sample who watch online video.

1. What is the mean of the sampling distribution of \hat{p} ? Explain.
2. Find the standard deviation of the sampling distribution of \hat{p}. Check that the 10% condition is met.
3. Is the sampling distribution of \hat{p} approximately Normal? Check that the Normal condition is met.
4. If the sample size were 9000 rather than 1000 , how would this change the sampling distribution of \hat{p} ?

CHECK YOUR UNDERSTANDING
(a) About 75% of young adult Internet users (ages 18 to 29) watch online video. Suppose that a sample survey contacts an SRS of 1000 young adult Internet users and calculates the proportion \hat{p} in this sample who watch online video.

1. What is the mean of the sampling distribution of \hat{p} ? Explain.
2. Find the standard deviation of the sampling distribution of \hat{p}. Check that the 10% condition is met.
3. Is the sampling distribution of \hat{p} approximately Normal? Check that the Normal condition is met.
4. If the sample size w distribution of \hat{p} ?
(a) Given in formation: $p=.75$ (the population parameter for a proportion)
(1) The mean of the sampling distribution $\left(\mu_{\hat{p}}\right)$ is the same as the population proportion $\longrightarrow \mu_{\hat{p}}=.15$
(2) 10% COndition: $S R S=1,000$ AND IT IS FAIR TO ASSUME THE POPULATION is over 10,000 young adults

$$
\sigma_{\hat{p}}=\sqrt{\frac{p q}{n}}=\sqrt{\frac{(.75)(.25)}{1000}}=.0137
$$

(3) The sampling distribution is approximately normal because Normal conditions met:

$$
\begin{aligned}
& n p=1000(.75)=750 \geqslant 10 \\
& n q=1000(.25)=250 \geqslant 10 \mathrm{~V}
\end{aligned}
$$

(4) SRS $n=9,000$

$$
\underline{\underline{\hat{p}}}=\sqrt{\frac{p q_{0}}{n}}=\sqrt{\frac{(.75)(.25)}{9000}}=\underline{\underline{~}} 0046 \text { (NOTICE IT DECREASES) }
$$

- Example 2:

A polling organization asks an SRS of 1500 first-year college students how far away their home is. Suppose that 35% of all firstyear students actually attend college within 50 miles of home. What is the probability that the random sample of 1500 students will give a result within 2 percentage points of this true value?

So what are they asking?
Draw a picture!

■ Example 2:
A polling organization asks an SRS of 1500 first-year college students how far away their home is. Suppose that 35% of all first-year students actually attend college within 50 miles of home. What is the probability that the random sample of 1500 students will give a result within 2 percentage points of this true value?

STATE: We want to find the probability that the sample proportion falls between 0.33 and 0.37 (within 2 percentage points, or 0.02 , of 0.35).

PLAN: We have an SRS of size $n=1500$ drawn from a population in which the proportion $p=0.35$ attend college within 50 miles of home.

Keep Going!

- Example 2 (Cont):

Can we use the normal model?

- Since $n p=1500(0.35)=525$ and $n(1-p)=1500(0.65)=975$
-And both are both greater than 10 , we can use the normal model.
- Next standardize to find the desired probability.

$$
\begin{gathered}
z=\frac{0.33-0.35}{0.0123}=-1.63 \quad Z=\frac{0.37-0.35}{0.0123}=1.63 \\
P(0.33 \leq \hat{p} \leq 0.37)=P(-1.63 \leq Z \leq 1.63)=0.9484-0.0516=0.8968
\end{gathered}
$$

CONCLUDE: About 90\% of all SRSs of size 1500 will give a result within 2 percentage points of the truth about the population.

Example 3: The Superintendent of a large school wants to know the proportion of high school students in her district are planning to attend a four-year college or university. Suppose that 80% of all high school students in her district are planning to attend a four-year college or university. What is the probability that an SRS of size 125 will give a result within 7 percentage points of the true value?

Example 3: The Superintendent of a large school wants to know the
proportion of high school students in her district are planning to attend a four-year college or university. Suppose that 80% of all high school students in her district are planning to attend a four-year college or university. What is the probability that an SRS of size 125 will give a result within 7 percentage points of the true value?
$\hat{p}=.8=$ proportion of HS students planning to attend SRSS $n=125$
FIND Probability $\hat{p}=.8 \pm 79_{0} \longleftrightarrow P(.73 \leq \hat{p} \leq .87)$
Check conditions10\% condition - IS THE SCHOOL ID ST

$$
n=125 * 10=1,250 \text { school has } 1,250
$$

(2) Normal condition - $n p=125(.8)=100 \geqslant 10 \mathrm{HS}$ students which met
we can use the Normal approxirection
for a large school)Find mean and std deus:

$$
\mu \hat{p}=.8 \quad \sigma \hat{p}=\sqrt{\frac{p q}{n}}=\sqrt{\frac{(.8)(.2)}{125}}
$$

$$
6 \hat{p}=.036
$$State model

$$
N(.8, .036)
$$

$$
\begin{aligned}
& \text { FND Probability by using } Z \text { scores } \\
& P(.73 \leq \hat{P} \leq .87)=P(-1.94 \leq \hat{P} \leq 1.94)
\end{aligned}
$$

$$
\begin{aligned}
& z=\frac{.73-.8}{.036} \\
& z=-1.94
\end{aligned}
$$

$$
1
$$

(7) Since the Z scores are ± 1.94 (about 2 std deviations) Remember the 68-95-99.7 rule!
The probability should be around 95%
Find $p(-1.94 \leq \hat{p} \leq 1.94)=9476$

$$
\begin{aligned}
& N(0,1) \rightarrow \text { normalcdf }(-1.94,1.94,0,1) \\
& N(-1.94 \leq P \leq 1.94)
\end{aligned}
$$

Conclude: About 95\% of all Sess of size 125 will give a simple proportion within 7 points of the tree population propurtion of high school students who are planning to attend a 4 year college ar university.

Sample Proportions

Summary

In this section, we learned that...
When we want information about the population proportion p of successes, we
\checkmark often take an SRS and use the sample proportion \hat{p} to estimate the unknown parameter p. The sampling distribution of \hat{p} describes how the statistic varies in all possible samples from the population.

The mean of the sampling distribution of \hat{p} is equal to the population proportion p. That is, \hat{p} is an unbiased estimator of p.
The standard deviation of the sampling distribution of \hat{p} is $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$ for an SRS of size n. This formula can be used if the population is at least 10 times as large as the sample (the 10% condition). The standard deviation of \hat{p} gets smaller as the sample size n gets larger.
When the sample size n is larger, the sampling distribution of \hat{p} is close to a
Normal distribution with mean p and standard deviation $\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}$.
\checkmark In practice, use this Normal approximation when both $n p \geq 10$ and $n(1-p) \geq 10$ (the Normal condition).

