

NaME: KEy

[1]
Toss 4 times Suppose you toss a fair coin 4 times. Let $X=$ the number of heads you get.
(a) Find the probability distribution of X.
(b) Make a histogram of the probability distribution. Describe what you see.
(c) Find $P(X \leq 3)$ and interpret the result.

(A)

X of he eds (4 times)						
Valve $\left(x_{i}\right)$						
Probability $\left(p_{i}\right)$						

(c) $P(x \leq 3)=1-.0625=.9375$

There is a $93.75 \%_{0}$ chance that you will
get 3 or fewer heads on 4 tosses of a fair casing
12 Pair-a-dice Suppose you roll a pair of fair, six-sided dice. Let $T=$ the sum of the spots showing on the up-faces.
(a) Find the probability distribution of T.
(b) Make a histogram of the probability distribution.

Describe what you see.
(c) Find $P(T \geq 5)$ and interpret the result.
(a) $T=$ The sum of the spots on 2 dice

(b) $\cdot 2$

Source: ${ }^{2} \operatorname{TPS}(C H 6) \left\lvert\, \begin{aligned} & { }^{6} \\ & \begin{array}{l}\text { The histogram shows a symmetric } \\ \text { distribution about a center of } 7\end{array}\end{aligned}\right.$

5 Benford's law Faked numbers in tax returns, invoices, - - or expense account claims often display patterns that aren't present in legitimate records. Some patterns, like too many round numbers, are obvious and easily avoided by a clever crook. Others are more subtle. It is a striking fact that the first digits of numbers in legitimate records often follow a model known as Benford's law. ${ }^{5}$ Call the first digit of a randomly chosen record X for short. Benford's law gives this probability model for X (note that a first digit can't be 0):
(a) This is a legitimate probability distribution because
(1) all the probabilities are between 0 and 1
(2) the probibilitiessum to 1 .

First digit X:	1	2	3	4	5	6	7	8	9
Probability:	0.301	0.176	0.125	0.097	0.079	0.067	0.058	0.051	0.046

(a) Show that this is a legitimate probability distribution.
(b) Make a histogram of the probability distribution. Describe what you see.
(c) Describe the event $X \geq 6$ in words. What is $P(X \geq 6)$?
(d) Express the event "first digit is at most 5 " in terms of X. What is the probability of this event?
(c) The ! ${ }^{\text {ST }}$ digit in a randomly chosen record is a 6 or higher

(d) The event:

$$
P(x \leq 5)=1-.222=.778
$$

7. Benford's law Refer to Exercise 5. The first digit of a randomly chosen expense account claim follows
Benford's law. Consider the events $A=$ first digit is 7
or greater and $B=$ first digit is odd.
(a) What outcomes make up the event A ? What is $P(A)$?
(b) What outcomes make up the event B ? What is $P(B)$?
(c) What outcomes make up the event " A or B "?

What is $P(A$ or $B)$? Why is this probability not equal to $P(A)+P(B)$?
(a) EVENT $A=(7,8,9) \quad P(A)=.058+.051+.046=.1 .55$
(b) EVENT $B=(1,3,5,7,9) \quad P(B)=.301+.125+.079+.058+.046=0.609$
(c) EVANT A OF $B=(1,3,5,7,8,9) \quad P(A \cup B)=P(A)+P(B)-P(A \cap B=7,9)$ $=.155+.609-.104=.66$

$$
P(A \circ r B) \neq P(A)+P(B) \text { because }
$$

event A and B are NOT mute ally exclusive.

1 BKeno Keno is a favorite game in casinos, and similar games are popular with the states that operate lotteries. Balls numbered 1 to 80 are tumbled in a machine as the bets are placed, then 20 of the balls are chosen at random. Players select numbers by marking a card. The simplest of the many wagers available is "Mark 1 Number." Your payoff is $\$ 3$ on a $\$ 1$ bet if the number you select is one of those chosen. Because 20 of 80 numbers are chosen, your probability of winning is $20 / 80$, or 0.25 . Let $X=$ the amount you gain on a single. play of the game.
(a) Make a table that shows the probability distribuion of X.
(b) Compute the expected value of X. Explain what this result means for the player.
$X=$ amount you gain on a
single play of Keno

(b) $E(x)=0(.75)+3(.25)=.75$
$E(x)=\mu_{x}=\$.75$
IN THE LONG RUN, FOR EUERY $\$ 1$ THE PLAYER BETS, HE GETS ONLY
$75 \&$ BACK.
(A) HI TO GRAMS

DESCRIBE: THE DISTRIBUTION OF THE NUMBER OF ROOMS is ROUGHLTY SYMMETRIC FUR OWNERS AND SKEWED TO THE RIGHT FOR RENTERS. OVERALL, RENTER - OCCURIED UNITS TEND TO HAVE FEWER ROOMS THAN OWNER OCCUPIED UNITS
(c) Find the standard deviations of both X and Y. Explain why this difference makes sense.

The mean fur renters is about 4.2 rooms, compared to the mean for owners is about. 6.3 rooms; which matches our observations from the histograms

$G_{R}=1.31$ ROOMS
the owner distribution to have a slightly wider spread than the renter distribution. Even though the distribution of renter-occupied units is skewed to the right, it is more concentrated (contains less variability) about the "peak" than the symmetric distribution for owner-occupied units. 1

23 ITBS scores The Normal distribution with mean $\ldots \mu=6.8$ and standard deviation $\sigma=1.6$ is a good description of the Iowa Test of Basic Skills (ITBS) vocabulary scores of seventh-grade students in Gary, Indiana. Call the score of a randomly chosen student X for short. Find $P(X \geq 9)$ and interpret the result.
(1) STATE: what is the probability that a. randomly chosen student scores a 9 or better on the IrAS?
(2) PLAN: The scone X ot the randomly chosen students has the N $(6.8,1.6)$ distribution. We want to find the $P(x \geqslant 9)$, we will stand andize. the scores and find the area under the normal Curve.
(3) Do: The standardized scare fur the test:

$$
\begin{array}{ll}
Z=\frac{9-6.8}{1.6}=1.38 & \begin{array}{c}
6.89 \\
P(Z \geqslant 1.38)=
\end{array} \\
\begin{array}{ll}
.0838 & \text { ND D, DT }
\end{array} \longrightarrow \text { Normalcdf }(1.38,9999)= \\
.0838
\end{array}
$$

(4) Conclude: there is about an 8% chance. that the chosen student's score is 9 or higher.

$$
V_{A R}(x)=\sigma_{x}^{2}=\left(x_{1}-\mu_{x}\right)^{2} p_{1}+\left(\dot{x}_{2}-\mu_{x}\right)^{2} \cdot p_{2}=\cdots
$$

19 CONT Calculate

LISTS

$$
\begin{aligned}
& L_{1}=\#_{\text {Rooms }} 1-10\left(x_{i}\right. \text { s) } \\
& L_{2}=P \text { (ownED) } \\
& L_{3}=L_{1} * L 2 \\
& L 4=P(\text { rent }) \\
& L S=L 1 * L U
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{R}=1.3077 \mathrm{raoms} \\
& \mu_{R}=4.187
\end{aligned}
$$

Create 16

$$
L_{6}=(L 1-6.284)^{2} \cdot L_{2}
$$

Create 16

$$
L 6=(L 1-4.187)^{2} \cdot L 4
$$

Stat call (1) L6

$$
\bar{\Sigma} x=2.689=\sigma_{0}^{2}
$$

FIND Go

$$
\sqrt{2.689}=1.6398
$$

STAT Cold (1) Ll

$$
\Sigma_{x}=1.710031=6_{R}^{2}
$$

Find $6 R$

$$
\sqrt{1.710031}=1.3027
$$

