Chapter Review Exercises

These exercises are designed to help you review the important ideas and methods of the chapler. Relevant leaming objectives are provided in bulleted form before each exercise.

- Use a probability distribution to answer questions aboul possible values of a random variable.
- Calculate the mean and slandard deviation of a discrete random variable.
R6.1. Knees Pathents receiving arlificial knees often expenence pain after surgery. The pain is measured on a subjective scale with possible values of 1 (low) to 5 (high). Let X be the pain score for a randomly selecled patient. The following table gives part of the probability distribution for X.

Value:	1	2	3	4	5
Probability:	0.1	0.2	0.3	0.3	>2

(a) Find $P(X=5)$.
(b) If two patients who received artificial knees are chosen at random, what's the probability that both of them report pain scores of 1 or 2 ? Show your work.
(c) Compute the mean and standard deviation of X. Show your work.

- Describe the eflects of transforming a random variable by adding or subiracting a conslanl and multiplying or dividing by a conslant.
- Find the mean and standard deviation of the sum or difference of independent random variables.

R6.2. A glass act In a process for manufacturing glassware, glass stems are sealed by heating them in a flame. The temperature of the flame can be adjusted to one of five different settings. Here is the probability distribution of the Alame-kemperature- A -(inidegrees ${ }^{-}$Celsius) for a randomly chosen glass:

Temperature:	540°	545°	550°	555°	560°
Probability:	0.1	0.25	03	025	0.1

$$
\mu_{X}=550^{\circ} \mathrm{C} \quad \sigma_{X}=5.7^{\circ} \mathrm{C}
$$

(a) The target temperature is $550^{\circ} \mathrm{C}$. What are the mean and standard deviation of the number of degrees off target, $D=X-550$?
(b) A manager asks for results in degrees Fahrenheil. The conversion of X into degrees Fahrenheit is given by $y=\frac{9}{5} X+32$. What are the mean μ_{y} and the standard deviation σ_{y} of the temperature of the flame in the Fahrenheit scale?

- Interprel the mean and slandard deviation ol a random variable.
- Find the mean and standard deviation of the sum or difierence of independent random variables.

R6.3. Keno In a game of 4 -Spot Keno, the player picks 4 numbers from 1 to 80 . The casino randomly selects 20 winning numbers from 1 to 80 . The table below shows the possible outcomes of the game and their probabilities, along with the amount of money (Payout) that the player wins for a $\$ 1$ bel If $X=$ the payout for a single $\$ 1$ bet, you can check that $\mu_{X}=\$ 0.70$ and $\sigma_{X}=\$ 6.58$.

Matches:	0	1	2	4	
Probability:	0.308	0.433	0.213	0.043	0.003
Payout:	$\$ 0$	$\$ 0$	$\$ 1$	$\$ 3$	$\$ 120$

(a) linterpret the values of μ_{x} and σ_{x} in context.
(b) Jerry piaces a single $\$ 5$ bet on 4 -Spot Keno. Find the expected value and the standard deviation of his winnings.
(c) Marla plays five games of 4-Spol Keno, betting \$1 each time. Find the expected value and the standard deviation of her total winnings.
(d) Based on your answers to (b) and (c), which player would the casino prefer? Justify your answer.

- Determine whether two randorn variables are independent.
- Find probabilities invoiving the sum or diflerence of independeni Normal random variables.

R6.4. Applying torque Amachine fastens plastic screwon caps onto containers of motor oil. If the machine applies more torque than the cap can wilhstand, the cap will break. Both the lorque applied and the strength of the caps vary. The capping-machine torque T follows a Normal distribution with mean 7 inch-pounds and standard deviation 0.9 inch-pounds. The cap strength C (the torque that would break the cap) follows a Normal dismbution with mean 10 inch-pounds and standard deviation 1.2 inch-pounds.
(a) Explain why it is reasonable to assume that the cap strength and the torque applied by the machine are independent.
(b) Let the random variable $\mathrm{D}=\mathrm{C}-\mathrm{T}$. Find its mean and standard deviation.
(c) What is the probability that a cap will break while being fastened by the machine? Show your work.
Exercises R6.5 and R6.6 refer to the following setting. According to the Mars candy company, 20% of its plain M\&M's candies are orange. Assume that the company's claim is true. Suppose that you reach into a large bag of plain M\&M's (without looking) and pull out 8 candies. Let $\mathrm{X}=$ the number of orange candies you get.

- Determine whether the conditions for a binomial random variable are met.
- Calculate the mean and standard deviation of a binomial random variable. Interpret these values in context.

R6.5. Orange $M \& M^{\prime}$'s

(a) Explain why X is a binomial random variable.
(b) Find and interpret the expected value of X .
(c) Find and interpret the standard deviation of X.

- Compute and interpret probabilities involving binomial distributions.

R6.6. Orange M\&M's

(a) Would you be surprised if none of the candies were orange? Compute an appropriate probability to support your answer.
(b) How surprising would it be to get 5 or more orange candies? Compute an appropriate probability to support your answer.

- Find probabilities involving geometric random variables.

R6.7. Sushi Roulette In the Japanese game show Sushi Roulette, the contestant spins a large wheel that's divided into 12 equal sections. Nine of the sections have a sushi roll, and three have a "wasabi bomb." When the wheel stops, the contestant must eat whatever food is on that section. Tow win the game, the contestant must eat one wasabi bomb. Find the probability that it takes 3 or more spins for the contestant to get a wasabi bomb. Show your method clearly.

- Determine whether the conditions for the Normal approximation to a binomial distribution are met.
- When appropriate, use the Normal approximation to estimate probabilities in a binomial setting.

R6.8.* Is this coin balanced? While he was a prisoner of war during World War II, John Kerrich tossed a coin 10,000 times. He got 5067 heads. If the coin is perfectly balanced, the probability of a head is 0.5 .
(a) Find the mean and the standard deviation of the number of heads in 10,000 tosses, assuming the coin is perfectly balanced.
(b) Explain why the Normal approximation is appropriate for calculating probabilities involving the number of heads in 10,000 tosses.
(c) Is there reason to think that Kerrich's coin was not balanced? To answer this question, use a Normal distribution to estimate the probability that tossing a balanced coin 10,000 times would give a count of heads at least this far from 5000 (that is, at least 5067 heads or no more than 4933 heads).

CHAPTER 7 RANDOM JARIABLES
ANSWER SHEET
R6. 14 KNEES: $V_{\text {alve }}(x) \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$

$$
\operatorname{Prob}(x) .1 .2 .3 .3 \text {.1 }=1.00
$$

(A] $P(x=5)=1-. .1+.2+.3+.3)=1-.9=. .1$
(1B) $P(x \leq 2)=P(x=1)+P(x=2)=.1+.2=.3$ $P($ BoTH have poin 1 al 2$)=(-3)(.3)=.09$
(c)

$$
\begin{aligned}
& \mu_{x}= 1(.1)+2(.2)+3(.3)+4(.3)+5(.1)=3.1 \\
& \sigma_{x}^{2}=(1-3.1)^{2}(.1)+(2-3.1)^{2}(.2)+(3-3.1)^{2}(.3)+ \\
&(4-3.1)^{2}(.3)+(5-3.1)^{2}(.1)=\sqrt{1.29} \Rightarrow \sigma_{x}=1.136 \\
& u_{x}=3.1 \quad \sigma_{x}=1.136
\end{aligned}
$$

R6.2 $\mu_{x}=550^{\circ} \mathrm{C} \quad \sigma_{x}=5.7^{\circ} \mathrm{C}$
[A] $D=X-550, \mu_{D}=550-550 \quad \mu_{D}=0^{\circ} \mathrm{C}$ $G_{D}=5.7^{\circ} \mathrm{C}$
B

$$
\begin{array}{ll}
y=9 / 5 x+\frac{32}{F} & \\
\mu_{y}=9 / 5(550)+32 & \sigma_{y}=9 / 5(5.7) \\
\mu_{y}=1,022^{\circ} \mathrm{F} & \sigma_{y}=10.26^{\circ \mathrm{F}} \text { remember, } \\
\text { adding a constent } \\
\text { to songle RV } \\
& \text { doe Nor chinge } \\
& \text { the vuribbility. }
\end{array}
$$

$X=$ the payout for a single \$1 bet
(A) The average payout on a $\$ 1$ bet is $\$.70$. The amount that an individuals payout vary From This is $\$ 6.58$, ON AVERAGE.
(B) $Y=$ The amount of Jerry's payout ($\$ 5$)

$$
\begin{aligned}
& \mu_{y}=5 \mu_{x}=5(.70) \\
& \sigma y=5 \mu_{y}=5(6,58) \quad\left\{\begin{array}{l}
\mu_{y}=\$ 3.50 \\
b y=\$ 32.90
\end{array} .\right.
\end{aligned}
$$

(c) $\quad W=$ the amount of Maria's Payout (5-\$1 bets)

$$
\begin{gathered}
\mu_{w}=\mu_{x}+\mu_{x}+\mu_{x}+\mu_{x}+\mu_{x}=5 \mu_{x}=5(.70)=\$ 3.50 \\
\sigma_{w}^{2}=5 \cdot\left(\sigma_{x}\right)^{2}=5(6.58)=216.482 \\
\mu_{W}=\$ 3.50 \quad \sigma_{w}=\$ 14.71
\end{gathered}
$$

(c) The average Payout for both Jerry and mania at $\$ 3.50$ However the Casicuo would prubchly peter Maria since there is less variability in her strategy. They are leas likely to get great amounts from her but also less likely to have to pay great amounts to her
[R6.4 A T Capping-mashine torque $(i n-16) \quad N(7,09)$ $C=$ cup strength -roque to brearcup (iny/b)' $N(10,1.2)$
They acre independent because the machine that makes the cop and the machine that applies the torove are not the same.

B

$$
\begin{array}{r}
D=C-T \quad \mu_{D}=\mu_{C}-\mu_{T}=10-7=3 \quad \mu_{D}=3 \mathrm{in} / 1 b \\
\sigma_{D}^{2}=\sigma_{C}^{2}-\sigma_{T}^{2}=.9^{2}+1.2^{2}=2.25 \\
G_{D}=\sqrt{2.2 .5} \quad 6 D=1.5 \mathrm{iN} / 1 b
\end{array}
$$

16

Using The New Random Ucri, bile, D,
with a normal distribution with mean $=3$ in $/ 16$ and stondud devection $=1.5$ in $/ \mathrm{lb}$, The probability, the The cp will break is about 290 (.02275).

R6.5 ORANG mAM's
(a) B-EITIER ORANGE OR NOT

I - Assuming the candies are well mixed, the color of 1 cindy chosen should wot Tell us ANyTHING ABOUT THE COLOR OF ANOTHER
N- Fixed Number of Trials $N=8$
S - Fixed Probability $p=.2$
Conclusiden: $X=\#$ of orange Candies you get is a RV.
(b) $M_{x}=n p=8(.2)=1.6$ "We expect to find 1.6 orange $M+M s$ in a sample size of 8 ."
(c) $\sigma_{x}=\sqrt{n p(1-p)}$
$=\sqrt{\delta(.2)(.8)}=1.13 \quad$ "In individual samples of size 8 ; the number of orange $M+M$'s will very by 1.13 , on average.

$$
\begin{aligned}
& \text { R6.6 } P(x=0) \Rightarrow P(x=k)=\binom{n}{k} p^{k}(1-p)^{N-k} \\
& 8(x=0)=\binom{8}{0}(2)^{0}(1-.2)^{8} \\
&\binom{8}{0}=8 n c_{r} 0=(1)
\end{aligned}
$$

Since tie probability is About $17 ?_{0}$, IT WOULD NOT BE SURPRISING TO GET NO ORANCE mam's.
(b) $P(x \geqslant 5)=1-P(x \leqslant 4)=1-\operatorname{binomcdf}(8, .2,4)=1-.9896$ $P(x \geqslant 5)=.0104$ Since the Probability is ABOUT 1%, IT WOULD BE SOME WHAT SURPRISING TO FIND 5 OR MURE M+M'S THAT ARE ORANGE.

RC. $7 \quad Y=$ Number of spins to get a "washbi bomb"

12 Equal sections
9 Sushi $\quad 9 / 12=3 / 4$
3 WASABI $3 / 12=1 / 4$

Geometric Distribution $G(.25)$

$$
\begin{aligned}
P(y \geqslant 3)=1-P(y \leq 2)= & \begin{array}{l}
1-.4375 \\
\\
\\
\\
\text { geometcdf }(.25,2)
\end{array}=. .5625
\end{aligned}
$$

The probability it takes 3 or more spins to land on "was rabi bort" is 56.25%

R6.8 (a) $x=0$ of heads in 10,000 tosses

$$
\begin{aligned}
& \mu_{x}=1 / 2(1,000)=5,000 \text { heads } \\
& \sigma_{x}=\sqrt{n p q}=\sqrt{2500}=50 \text { heads }
\end{aligned}
$$

(b) The conditions for approximating a normal distribution cree met :

$$
\begin{gathered}
n p \geqslant 10 \\
1 / 2(5000)=2500 \geqslant 10
\end{gathered}
$$

$$
n(1-p) \geqslant 10
$$

$$
1 / 2(5000)=2500 \geqslant 10
$$

