Chapter 6: Random Variables

Key Vocabulary:

- random variable
- discrete random variable
- probability distribution
- mean of a random variable
- variance of a random variable
- probability density curve
- continuous random variable
- standard deviation

- binomial setting
- binomial random variable
- binomial distribution
- binomial coefficient
- binomial probability
- linear transformation
- normal approximation
- geometric setting
- geometric distribution
- geometric random variable
- Normal approximation

- geometric probability
- factorial
- expected value
- standard deviation
- μ_X
- $-\mu_{\scriptscriptstyle Y}$
- uniform distribution

Discrete and Continuous Random Variables

1. What is a <i>random variable</i> ?		
2.	Define probability distribution.	
3.	What is a <i>discrete</i> random variable?	
4.	What are the <i>two requirements</i> for the probability distributions of discrete random variables?	
5.	If X is a discrete random variable, what information does the probability distribution of X give?	
6.	In a probability <i>histogram</i> what does the height of each bar represent (assuming the width of each bar is the same)?	
7.	In a probability <i>histogram</i> , what is the sum of the height of each bar?	
8.	What is the mean μ_X of a discrete random variable X?	
9.	How do you calculate the mean of a discrete random variable?	
10.	Define <i>expected value</i> . What notation is used for expected value?	
11.	Does the expected value of a random variable have to equal one of the possible values of the random variable? Explain.	

	12. Explain how to <i>calculate the variance and standard deviation</i> of a discrete random variable.
	13. Explain the meaning of the standard deviation of a random variable X.
	14. What is a <i>continuous random variable</i> and how is it displayed?
	15. If <i>X</i> is a <i>continuous random variable</i> , how is the <i>probability distribution of X</i> described?
	16. What is the area under a <i>probability density curve</i> equal to?
	17. What is the difference between a <i>discrete random variable</i> and a <i>continuous random variable</i> ?
	18. If X is a discrete random variable, do $P(X > 2)$ and $P(X \ge 2)$ have the same value? Explain.
	19. If X is a <i>continuous random variable</i> , do $P(X > 2)$ and $P(X \ge 2)$ have the same value? Explain.
	20. How is a Normal distribution related to probability distribution?
Tr	ansforming and Combining Random Variables

1. What is the effect on a random variable of multiplying or dividing by a constant?

2.	How does multiplying by a constant effect the variance?
3.	What is the effect on a random variable of adding or subtracting by a constant?
4.	Define linear transformation.
5.	What are the effects of a <i>linear transformation</i> on the <i>mean</i> and <i>standard deviation</i> ?
6.	Define the mean of the sum of random variables.
7.	What are independent random variables?
8.	Define the <i>variance of the sum of independent random variables</i> . What types of variables does it apply to?
9.	When can you add the variances of two random variables?
10	. State the equation for the <i>mean of the difference</i> of random variables?
11	State the formula for the <i>variance of the difference</i> of random variables

- 12. What happens if two independent Normal random variables are combined?
- 13. Suppose $\mu_X = 5$ and $\mu_Y = 10$. According to the rules for means, what is μ_{X+Y} ?
- 14. Suppose $\mu_X = 2$. According to the rules for means, what is μ_{3+4X} ?
- 15. Suppose $\sigma_X^2 = 2$ and $\sigma_Y^2 = 3$ and X and Y are independent random variables. According to the rules for variances, what is σ_{X+Y}^2 ? What is σ_{X+Y} ?
- 16. Suppose $\sigma_X^2 = 4$. According to the rules for variances, what is σ_{3+4X}^2 ? What is σ_{3+4X} ?

Binomial and Geometric Random Variables

1. What is a binomial setting?
2. Describe the <i>conditions</i> of a binomial setting.
3. What is a <i>binomial random variable</i> and what are its possible values?
4. Define the <i>parameters</i> of a binomial distribution.
5. Explain the meaning of the <i>binomial coefficient</i> and state the <i>formula</i> .
6. Explain how to calculate binomial probabilities.
7. What commands on the calculator are used to calculate binomial probabilities?
8. Explain how to calculate the mean and standard deviation of a binomial random variable
9. When can the binomial distribution be used to sample without replacement? Explain why

10. What is a geometric setting?
11. Describe the <i>conditions</i> for a geometric setting.
12. What is a <i>geometric random variable</i> and what are its possible values?
13. Describe the <i>parameters</i> of a geometric distribution.
14. What is the <i>formula</i> for geometric probability?
15. How is the <i>mean</i> of a geometric random variable calculated?

The Practice of Statistics (4th Edition) - Starnes, Yates, Moore