

Example: Apgar Scores: Babies' Health at Birth											
In 1952, Dr Virginia Apgar suggested 5 criteria for measuring a baby's health at birth: skin color, heart rate, muscle tone, breathing and response when stimulated. She developed a 0-1-2 scale to rate a new born on each of these 5 criteria. A baby's Apgar score is a whole number value 0-10. Apgar scores are still used today to evaluate the health on a newborns.											
 What Apgar scores are typical? Research was done on over 2 million newborns in a single year. 											
Let's <u>define a random variable</u> : Xa Anora going of a random value calcuted behavior											
X= Apgar score of a randomly selected baby The table below gives the probability distribution for X:											
Value:	0	1	2	3	4	5	6	7	8	9	10
Probability:	0.001	0.006	0.007	0.008	0.012	0.020	0.038	0.099	0.319	0.437	0.053
· · · · · · · · · · · · · · · · · · ·					0.01-	0.020	0.050			0.437	0.055

Discrete and Continuous Random Variables

Summary

In this section, we learned that...

- A random variable is a variable taking numerical values determined by the outcome of a chance process. The probability distribution of a random variable X tells us what the possible values of X are and how probabilities are assigned to those values.
- A discrete random variable has a fixed set of possible values with gaps between them. The probability distribution assigns each of these values a probability between 0 and 1 such that the sum of all the probabilities is exactly 1.
- A continuous random variable takes all values in some interval of numbers. A density curve describes the probability distribution of a continuous random variable.

Summary

In this section, we learned that...

- The mean of a random variable is the long-run average value of the variable after many repetitions of the chance process. It is also known as the expected value of the random variable.
- ✓ The expected value of a discrete random variable X is

$$\mu_x = \sum x_i p_i = x_1 p_1 + x_2 p_2 + x_3 p_3 + \dots$$

The variance of a random variable is the average squared deviation of the values of the variable from their mean. The standard deviation is the square root of the variance. For a discrete random variable X,

$$\sigma_X^2 = \sum (x_i - \mu_X)^2 p_i = (x_1 - \mu_X)^2 p_1 + (x_2 - \mu_X)^2 p_2 + (x_3 - \mu_X)^2 p_3 + \dots$$

