	Remember: Binomial Models are DISCRETE RV's.		
AP Statistics – 6.3B2	Examples: P(X<2) = P(X=0) + P(X=1)		
Goal: Understanding Binomial RV's	$P(X \le 2) = P(X=0) + P(X=1) + P(X=2)$ P(X>3) ↔ P(X≥4) P(X>2) = 1 P(X<2) = 1 P(X<2)		
I. Binomial Setting: CYU (page 385): 1. ↓ ET X = ※ ○ F ACES	$\frac{P(X \ge 3) = 1 - P(X \le 2)}{P(X > 3) = 1 - P(X \le 3)}$		
B = BINARY - SUCCESS OF FAILURE I = INDEPENDENT N = FIXED NUMBER OF TRIALS S = FIXED PROBABILITY OF SUCCES	YES - SUCCESS IS AN ACE : Failure NOT YES - SAMPLE WITH REPLACEMENT ACE. YES - FIXED TRIALS -10 SS YES - FIXED PROBABILITY 4/52		
B = V SUCCESS - OVER 6 ft 1 = NOT IN DEPENDENT - SELECTING N = V FIXED TRIALS - 3	-> NOT BINGMIAL RV (NOT INDERENDENT) FAILURE - UNDER 6 ft WITHOUT REPLACEMENT FOR A SMALLX SAMPLE NGE FROM PERSON TO PERSON		
3. <u>LET W= # OF 55 rolled -> NOT BINOMIAL RV(NOT FIXED PROB.)</u> B= <u>SUCCESS - ROLLO 5 FAILURE - NOT A 5</u> I= <u>INDEPENDENT SINCE ROLLING A DIE -1 TRIAL POESNOT AFFECT</u> N= <u>NUMBER TRIALS FIXED - 5</u> S= <u>NOT FIXED PROBABILITY 65IDED DIE 1/6</u> 8 SIDED DIE 1/8			

II. Binomial Probabilities:

Example: Rolling Doubles

In many games involving dice, rolling doubles is desirable. Rolling doubles mean the outcomes of two dice are the same, such as 1&1 or 5&5. The probability of rolling doubles when rolling two dice is 6/36 = 1/6. Suppose that a game player rolls the dice 4 times, hoping to roll doubles.

- (a) What is the probability that all 4 rolls are **not** doubles?
 - Define the RV: LET X = THE NUMBER OF DOUBLES IN 4 ROLLS OF 2 DICE.
 - Have the Binomial Conditions been met?
 B V SUCCESS-ROLL DOUBLES
 FAILURE NOT DOUBLES
 T V DICES ARE IN DEPENDENT 1 ROLL DOES NUT PEFECT ANOTHER ROLL
 N V FIXED TRIALS 4
 S V FIXED PROBABILITY = 6/36 = 16

• State the parameters of the Binomial Distribution X HAS A BINOMIAL DISTRIBUTION WITH N=4 P=16

- Give the probability statement:
 P(No Doubles) ⇒ P(x=0)
- How many ways can you roll doubles 0 times in 4 attempts?

• Calculate the probability

$$P(x=0) = P(F \cdot F \cdot F \cdot F) \leftarrow \text{since independent, we can}$$

$$= P(F) = 1 - 16 = 5/6$$

$$= (5/6)^{4}$$

$$P(x=0) = .482$$

Example: Rolling Doubles (continued)

- (b) Find the probability that the player gets doubles once in four attempts.
 - P(x=1)Give the probability statement:
 - . How many ways can you roll doubles 0 times in 4 attempts?
- 1 ST TRY SEFF 2ND TRY FSFF 4 POSSIBLE OUTCOMES TO 3RD TRY FFSF 4 POSSIBLE OUTCOMES TO 4TH TRY FFFS ROLL DOVBLES ONCE IN 4 TRIES.
 - Calculate the probability P(SFFF) = (1/6) (5/6) (5/6) (5/6) $P(FSFF) = (1/6) (5/6)^{3}$ $P(SSFS) = (1/6) (5/6)^{3}$ • P(FFFS) ~ (5/6)3(1/6) $P(x=1) = 4(1/6)(5/6)^3 = (.386)$
- (c) Find the probability that the player gets doubles twice in four attempts.
 - Give the probability statement: P(X=a)
 - How many ways can you roll doubles 2 times in 4 attempts? • (4) = 4 n Cr2 = 6 possible outcomes

• Calculate the probability
See Green Sheet

$$P(X = K) = \binom{n}{K} P^{K} (1-P)^{n-K}$$

$$P(X = 2) = \binom{n}{k} \binom{n}{2} \binom{5}{6}^{2} = (11)^{n-K}$$

4 (math $F_{1}ND$: (4) =Tie Check with : binompdf (4, 1/6, 2)

HOW TO FIND THE # OF OUTCOMES WITH CALC:

= n Cr

Secgreen sheet

n=#trkls K=#successes

(d) Should the player be surprised if he gets doubles more than twice in four attempts? Justify your answer.

D	(7a) = P(X=3)	+ P(x=4)
Can also be	$= \begin{pmatrix} 4\\ 3 \end{pmatrix} \begin{pmatrix} 1\\ 6 \end{pmatrix}^3 \begin{pmatrix} 5\\ 6 \end{pmatrix}$	$+ (\frac{4}{4})(\frac{1}{6})^{+}(\frac{5}{6})^{\circ}$
written P(X≥3)	= 4 (2)3(3)	$+ (t)^{4} \cdot t$
		+ ,00077 = ,016
CONCLUS	(X72) = .015 ion: Since THERE is on THAN 2 DOUBLES IN	4 ROLLS, THE PLAYER SHOULD BE
	SUR PRISED IF THIS	S HAPPENS.

(e) Summarize the probability distribution of the Random Variable X in the following table Let X = number of doubles in 4 attempts, (X follows a binomial distribution with n = 4 and p = 1/6)

Value (x)	O		ک	3	4	40
Probability	,482	.386	.116	.015	, 00 1	4 (L2)

IV. What you need to know about binomial and geometric RV's and their distributions

	Remember: Binomial and Geometric Models are DISCRETE RV's. See page 1 for examples			
	Binomial Setting (BINS)		Geometric Setting (BITS)	
•	<u>Binary</u>? Each observation falls into one of two categories: success or failure.	•	Binary? Each observation falls into one of two categories: success or failure.	
•	<u>Independent</u> ? The <i>n</i> observations are all independent.	•	Independent? The <i>n</i> observations are all independent.	
•	<u>Number</u> ? There is a fixed number <i>n</i> of observations.	•	<u>Trials</u> ? The variable of interest is "the number of trials required to obtain the 1 st success."	
•	<u>Success</u> ? The probability of success, <i>p</i> , is the same for each observation.	•	Success? The probability of success, <i>p</i> , is the same for each observation.	

Independence – knowing the result of one trial does not have any effect on the result of any other trial.

	Binomial Distribution	Geometric Distribution
•	B(n,p) where o n is the number of trials and	 G(p) where p is the fixed probability
	• p is the fixed probability	

<u>Variables used in formulas below</u> X=random variable n = number of trials	p = probability of success q = (1-p) = means "probability of failure" k = # of successes
Binomial Probability	Geometric Probability
To find the number of possible outcome: $\left(\frac{n}{k}\right) = \frac{n!}{k!(n-k)!}$	P(X=k) = (1-p) ^{k-1} p * where k = number of trials until the first success.
Learn how to use calculator. No need to memorize formula: $\binom{4}{2} = 4 nCr 2 = 6$	Probability it takes more than n trials to see the 1^{st} success : $P(x>k) = (1-p)^k$
To find the probability for "k" successes: $P(X = k) = \binom{n}{k} p^{k} (1-p)^{n-k}$	
Binompdf(n,p,k) – "Point" density function	Geometpdf(p,k) – "Point" density function
Remember to state distribution B(n,p)	Remember to state distribution G(p)
Binomcdf(n,p,k) – Cumulative density function	Geometcdf(p,k) – Cumulative density function
$\frac{Remember to state distribution B(n,p)}{\mu = np}$	Remember to state distribution G(p)
$\sigma = \sqrt{np(1-p)}$	Don't memorize the formulas for the geometric mean and standard deviation.
Conditions: $np \ge 10$ and $n(1-p) \ge 10$	1
* Better approximation as <i>n</i> gets larger.	$\mu_Y = E(Y) = \frac{1}{p}$