
2. LET $y=$ OVER 6 ft tall \rightarrow NOT BINOMIAL RV (NOT INDEPENDENT) $B=\downarrow$ Success - over $6 f t$ FAILURE - UNDER $6 f t$ 'I = NOT INDEPENDENT - SELEcTING WITHOUT REPLACEMENT FOR A SMALL X $N=\downarrow$ FiXED TRIALS- 3 SOT CHANGE FROM PERSON TO PERSON SAMPLE $S=\sqrt{ } \quad$ PROBABILITY WILL NOT CHANGE FROM PERSON TO PERSON
3. LET $W=$ OF 5 Srolled \rightarrow NOT BINOMIAL RV (NOT FIXED PROB.) $B=\$ SUCCESS - ROLL a 5 FAILURE - NOT A 5
$I=1 /$ INDEPENDENT SINCE ROWING A DIE - TRIAL DOESNOTAFFECT
$N=\sqrt{ } N U M B E R$ TRIALS FIXED - 5 ANOTHERTRIAL $S=$ NUT FIXED PROBABILITY 6 SIDED DIE $1 / 6$
II. Binomial Probabilities:

Example: Rolling Doubles

In many games involving dice, rolling doubles is desirable. Rolling doubles mean the outcomes of two dice are the same, such as $1 \& 1$ or $5 \& 5$. The probability of rolling doubles when rolling two dice is $6 / 36=1 / 6$. Suppose that a game player rolls the dice 4 times, hoping to roll doubles.
(a) What is the probability that all 4 rolls are not doubles?

- Define the RV: LET $X=$ THE NUMBER OF DOUBLES IN 4 BULLS OF 2 DICE.
- Have the Binomial Conditions been met?

- State the parameters of the Binomial Distribution X HAS A BINOMIAL DISTRIBUTIUN wiTH $n=4 \quad p=1 / 6$
- Give the probability statement:

```
P(NO DOUBL&S) }=>P(x=0
```

- How many ways can you roll doubles 0 times in 4 attempts?

$$
1 \text { WAY - THE ONLY OUTCOME - EFF }
$$

- Calculate the probability

$$
\begin{aligned}
& \text { culate the probability } \\
& \begin{aligned}
P(x=0) & =P(F \cdot F \cdot F \cdot F) \longleftarrow \text { since independent, we can } \\
& =P(F)=1-1 / 6=5 / 6 \\
& =(5 / 6)^{4} \\
P(X=0) & =.482
\end{aligned} \\
&
\end{aligned}
$$

Example: Rolling Doubles (continued)
(b) Find the probability that the player gets doubles once in four attempts.

- Give the probability statement: $P(x=1)$
- How many ways can you roll doubles 0 times in 4 attempts?

$$
\left.\begin{array}{ll}
\text { IS TRY } & \text { S FF F } \\
\text { IND TRY } & F F F \\
\text { IRDTRY } & F F \text { S } \\
\text { TH TRY } & F F F(S
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Calculate the probability THE LONG WAY: } \\
& P(S F F F)=(1 / 6)(5 / 6)(5 / 6)(5 / 6) \\
& P(F S F F)=(1 / 6)(5 / 6)^{3} 3 \\
& P(S S F S)=(1 / 6)(5 / 6)^{3} \\
& P(F F F S)=(5 / 6)^{3}(1 / 6) \\
& P P(X=1)=4(1 / 6)(5 / 6)^{3}=386
\end{aligned}
$$

(c) Find the probability that the player gets doubles twice in four attempts.

- Give the probability statement: $P(X=2)$
- How many ways can you roll doubles 2 times in 4 attempts?

$$
\binom{4}{2}=4 n \operatorname{cr} 2=6 \text { possible outcomes }
$$

- Calculate the probability

See Green Sheet

$$
\begin{aligned}
& \text { See Green Sheet } \\
& p(x=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
& p(x=2)=6^{k}(1 / 6)^{2}(5 / 6)^{2}=1116
\end{aligned}
$$

HowTO Find THE * of outcomes WITH CAL:

TiP
Check with:
binompd $f(4,1 / 6,2)$
(d) Should the player be surprised if he gets doubles more than twice in four attempts? Justify your answer.

CONCLUSiON: SINCE THERE is ONLY A 1.6% CHANCE OF GETTING MORE THAN 2 DOUBLES IN 4 ROLLS, THE PLAYER SHOULD BE surprised if this happens.
(e) Summarize the probability distribution of the Random Variable X in the following table

Let $X=$ number of doubles in 4 attempts, (X follows a binomial distribution with $n=4$ and $p=1 / 6$)

Value (x)	0	1	2	3	4
Probability	.482	.386	.116	.015	$.001 \leftarrow$ LD

(f) Create a histogram the probability distribution


```
Remember:
HISTOGRAM
STAT PLOT
XLIST-LI
\(F R \in Q-L Z\)
Wingoun
\(\begin{array}{ll}x \operatorname{MIN}=0 & \text { Y/MIN }=0 \\ x \text { MAX }=5 & \text { y mAX }=5 \\ x S C L=1 & \text { YSCL }=1\end{array}\)
```

$$
\begin{aligned}
& \text { (g) Find the Mean and Standard Deviation. Clearly show your work. } \\
& E(x)=\mu_{x}=\sum x_{i} p_{i}=0(.482)+\cdots+4(.001)=.667 \\
& V A R(x)=\sigma_{x}{ }^{2}=\sum\left(x_{i}-\mu_{x}\right)^{2} \cdot p_{i}=(0-.667)^{2}(.482)+. .0 \\
& +(4-.667)^{2}(.001)=.556
\end{aligned} \quad \begin{aligned}
& \quad \begin{array}{l}
\quad(x)=\sigma_{x}=\sqrt{.556}=746
\end{array}
\end{aligned}
$$

$\frac{\text { Green Sheet }}{\text { Binomial Dist }}$

μ_{x}	$=n p$
	$=4(1 / 6)$
	$=667$

σ_{x}	$=\sqrt{n p(1-p)}$
$=$	$\sqrt{4(1 / 6)(5 / 6)}$

III. Binomial Problem start to finish:

Example: Tastes as Good as the Real Thing?

The makers of a diet cola claim that its taste is indistinguishable from the full calorie version of the same cola. To investigate, an AP Statistics student named Emily prepared small samples of each type of soda in identical cups. Then, she had volunteers taste each cola in a random order and try to identify which was the diet cola and which was the regular cola. Overall, 23 of the 30 subjects made the correct identification.

If we assume that the volunteers really couldn't tell the difference, then each one was guessing with a $1 / 2$ chance of being correct. Let $\mathrm{X}=$ the number of volunteers who correctly identify the colas.
(a) Explain why X is a binomial random variable.

Binary? Yes. Guess correctly ur nut
INDEPENDENT? YES. RANDOMLY ASSIGNED. ASSUMES VOLUNTEERS CANNOT
Number? Yes. there are 30 trials
success? yes. The probability of Guessing currectly is 50%
THIS is A BINOMIAL DISTRIBUTIUN WITH $n=30$ and $p=.5 . Z$
(b) Find the mean and the standard deviation of X. Interpret each value in context. $B(30.5)$

VAR AND THERNUMBER OF CORRECT GUESSES WOULD
(c) Of the 30 volunteers, 23 made correct identifications. Does this BY ABOUT 2.74 , ON AVERAGE, can taste the difference between the diet and regular colas? $P(x \geqslant 23)=1-P(x \leq 22) \longleftrightarrow$ the ti i momial cd ALwAYs Comes from the $=1-\operatorname{binomcdf}(30, \cdot 5,22) \mathrm{left}$
THERE is A UERY small Chance That THERE wouLD be 23 or moe Correct GUESSES if THER VOLUNTEERS COULDN'T TELL THE DIFFERENCE iN COLA'S. THEREFJRE, we have Convincing evil ence that the volunteers can taste the difference.
IV. What you need to know about binomial and geometric RV's and their distributions

Remember: Binomial and Geometric Models are DISCRETE RV's. See page 1 for examples

Binomial Setting (BINS)	Geometric Setting (BITS)
- Binary? Each observation falls into one of two categories: success or failure.	- Binary? Each observation falls into one of two categories: success or failure.
- Independent? The n observations are all independent.	- Independent? The n observations are all independent.
- Number? There is a fixed number n of observations.	- Trials? The variable of interest is "the number of trials required to obtain the $1^{\text {st }}$ success."
- Success? The probability of success, p, is the same for each observation.	- Success? The probability of success, p, is the same for each observation.

Independence - knowing the result of one trial does not have any effect on the result of any other trial.

Binomial Distribution	Geometric Distribution		
- $\mathrm{B}(\mathrm{n}, \mathrm{p})$ where			
$\circ \quad \mathrm{n}$ is the number of trials and			
$\circ \mathrm{p}$ is the fixed probability		\quad	$\mathrm{G}(\mathrm{p})$ where
:---			
$\circ \quad \mathrm{p}$ is the fixed probability			

Variables used in formulas below

$p=p r o b a b i l i t y ~ o f ~ s u c c e s s ~$
$q=(1-p)=$ means "probability of failure"
$k=\#$ of successes

Binomial Probability

To find the number of possible outcome:

$$
\left(\frac{n}{k}\right)=\frac{n!}{k!(n-k)!}
$$

Learn how to use calculator. No need to memorize formula:

$$
\binom{4}{2}=4 n C r 2=6
$$

To find the probability for "k" successes:
$P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$

Binompdf(n,p,k) - "Point" density function Remember to state distribution $B(n, p)$	Geometpdf(\mathbf{p}, \mathbf{k}) - "Point" density function Remember to state distribution $G(p)$
Binomcdf(n,p,k) - Cumulative density function Remember to state distribution $B(n, p)$	Geometcdf(p,k) - Cumulative density function Remember to state distribution $G(p)$
$\begin{aligned} & \mu=n p \\ & \sigma=\sqrt{n p(1-p)} \end{aligned}$	Don't memorize the formulas for the geometric mean and standard deviation.
Conditions: $n p \geq 10$ and $n(1-p) \geq 10$ * Better approximation as n gets larger.	$\mu_{y}=E(Y)=\frac{1}{p}$

Geometric Probability

$P(X=k)=(1-p)^{k-1} p$

* where $k=$ number of trials until the first success.

Probability it takes more than \mathbf{n} trials to see the $1^{\text {st }}$ success :

$$
P(x>k)=(1-p)^{k}
$$

$$
\mu_{Y}=E(Y)=\frac{1}{p}
$$

