

Learning Objectives

After this section, you should be able to...

- ✓ DESCRIBE the idea of probability
- DESCRIBE myths about randomness
- DESIGN and PERFORM simulations

	Example: Golden Ticket Parking Lottery										
	Read	d the exan	nple or	n pa	age 290.						
What is the probability that a fair lottery would result in two winners from the AP Statistics class?											
	Students			Labels			Reading across row 139 in Table				
	AP S	P Statistics Class			-28		see two different labels from 01-				
	Othe	Other			-95		95. Record whether or not both				
	Skip	Skip numbers from 96-00					Statistics Class.				
55	5 58 89 94 04 7		70	70 84	10 98 43	56 35	69 34	48 39	45 17		
Х	X	X X	🗸 1	Х	X X	✔ Sk X	X X	X X	X X	X 🗸	
N	lo	No	No		No	No	No	No	No	No	
19	12	97 51 32	58 13		04 84	51 44	72 32	18 19	40 00 36	00 24 28	
1	✓	Sk X X	X •	1	✓ X	X X	X X	V V	X Sk X	Sk∣√∣√	
Y	es	No	No		No	No	No	Yes	No	Yes	
Bas clas	ed or s 3 ti	n 18 repet mes, so th	itions one prob	of o bab	ur simulati ility is estii	ion, both mated as	winners ca 16.67%.	ame from	the AP Sta	atistics	

Section 5.1 Randomness, Probability, and Simulation

Summary

In this section, we learned that...

- A chance process has outcomes that we cannot predict but have a regular distribution in many distributions.
- The law of large numbers says the proportion of times that a particular outcome occurs in many repetitions will approach a single number.
- The long-term relative frequency of a chance outcome is its probability between 0 (never occurs) and 1 (always occurs).
- Short-run regularity and the law of averages are myths of probability.
- A simulation is an imitation of chance behavior.

<text><text><text><text><text><section-header><text><text>

Example: Distance Learning										
	Distance-learning college student who is taking di the student's ag	courses are s. Randomly stance-learr ge. Here is t	e rapidly gair v select an ur ning courses he probabilit	ing populari ndergraduate for credit an y model:	ty among e student d record	Probability F				
	Age group (yr):	18 to 23	24 to 29	30 to 39	40 or over					
	Probability:	0.57	0.17	0.14	0.12	S				
(a) (b)	(a) Show that this is a legitimate probability model. Each probability is between 0 and 1 and 0.57 + 0.17 + 0.14 + 0.12 = 1 (b) Find the probability that the chosen student is not in the traditional college age group (18 to 23 years). P(not 18 to 23 years) = 1 - P(18 to 23 years) = 1 - 0.57 = 0.43									

Section 5.2 Probability Rules

Summary

In this section, we learned that...

- V Events A and B are mutually exclusive (disjoint) if they have no outcomes in common. If A and B are disjoint, P(A or B) = P(A) + P(B).
- A two-way table or a Venn diagram can be used to display the sample space for a chance process.
- ✓ The intersection (A ∩ B) of events A and B consists of outcomes in both A and B.
- ✓ The **union** (*A* ∪ *B*) of events *A* and *B* consists of all outcomes in event *A*, event *B*, or both.
- ✓ The general addition rule can be used to find *P*(*A* or *B*):

P(A or B) = P(A) + P(B) - P(A and B)

Example: Consider the to <i>E</i> : the grade of	Grade Distribut wo-way table on pag	ions e 314. urse, ar	Defin	ie events			
L: the grade is	lower than a B.						
	Grade Level						
School		Α	в	Below B	Total		
Liberal Ar	ts	2,142	1,890	2,268	6300		
Engineeri	ng and Physical Sciences	368	432	800	1600		
Health an	d Human Services	882	630	588	2100		
	Total	3392	2952	3656	10000		
Find <i>P</i> (<i>L</i>)	P(L) = <mark>3656</mark> / 10000 =	= 0.365	6	J	/		
$P(E \mid L) = 800 / 3656 = 0.2188$							
P(L E) = 800 / 1600 = 0.5000							

Section 5.3 Conditional Probability and Independence

Summary

In this section, we learned that...

- ✓ If one event has happened, the chance that another event will happen is a conditional probability. P(B|A) represents the probability that event B occurs given that event A has occurred.
- Events A and B are independent if the chance that event B occurs is not affected by whether event A occurs. If two events are mutually exclusive (disjoint), they cannot be independent.
- When chance behavior involves a sequence of outcomes, a tree diagram can be used to describe the sample space.
- ✓ The **general multiplication rule** states that the probability of events *A* and *B* occurring together is $P(A \cap B)=P(A) \cdot P(B|A)$
- ✓ In the special case of *independent* events, $P(A \cap B) = P(A) \cdot P(B)$
- ✓ The conditional probability formula states $P(B|A) = P(A \cap B) / P(A)$