Section 6.4 Conditional Probability

Learning Objectives
After this section, you should be able to...
\checkmark DEFINE conditional probability
\checkmark COMPUTE conditional probabilities

Conditional Probability Defined

- When we want the probability of an event from a conditional distribution, we write $P(B \mid A)$ and pronounce it "the probability of B given A."
- A probability that takes into account a given condition is called a conditional probability.

Definition:

The probability that one event happens given that another event is already known to have happened is called a conditional probability. Suppose we know that event A has happened. Then the probability that event B happens given that event A has happened is denoted by $P(B \mid A)$.

Read | as "given
that" or "under the condition that"

How to find conditional probability of an

 event B given the event A.1. We restrict our attention to the outcomes in A.
2. We then find the fraction of those outcomes that are A and B.

$$
P(\mathbf{B} \mid \mathbf{A})=\frac{P(\mathbf{A} \cap \mathbf{B})}{P(\mathbf{A})}
$$

- Note: $P(A)$ cannot equal 0 , since we know that A has occurred.

Example 1 - DECK OF CARDS

It is important to understand the direction of conditioning

EXAMPLE: I draw a card and look at it. I tell you it is red.

- What is probability it is a heart, given red?
$\mathrm{P}($ heart | red $)=\underline{P(\text { heart and red })}=$ P(red)
- And what is the probability it is red, given a heart? $\mathrm{P}(\mathrm{red} \mid$ heart $)=\mathrm{P}($ red and heart $)=$ P (heart)

Example 2: Using two-way table

Consider the Grade Distributions below. Define events
E : the grade comes from an EPS course, and
B : the grade is lower than a B.

	Grade Level				
School	A	B	Below	Total	
Liberal Arts	2,142	1,890	2,268	$\mathbf{6 3 0 0}$	
Engineering and Physical Sciences	368	432	800	$\mathbf{1 6 0 0}$	
Health and Human Services	882	630	588	$\mathbf{2 1 0 0}$	
	Total	$\mathbf{3 3 9 2}$	$\mathbf{2 9 5 2}$	$\mathbf{3 6 5 6}$	$\mathbf{1 0 0 0 0}$

Find $P(B)$

Find $P(E \mid B)$

$$
P(E \mid B)=800 / 3656=0.2188
$$

Find $P(B \mid E)$

$$
P(B \mid E)=800 / 1600=0.5000
$$

Example 3: Using two-way table

Use the table to answer the questions:

	Jeans	Other	Total
MALE	12	5	17
FEMALE	8	11	19
TOTAL	20	16	36

1) What is the probability a male wears Jeans?
2) What is the probability that someone wearing jeans is male?
3) Are being male and wearing jeans disjoint?

Example 4: Using Venn Diagrams

Residents of a large apartment complex can be classified based on the events
A: reads USA Today and
B: reads the New York Times.
The Venn Diagram below describes the residents. What is the probability that a randomly selected resident who reads USA Today also reads the New York Times?

There is a 12.5% chance that a randomly selected resident who reads USA
Today also reads the New York Times.

