3.1A HO DAY \varnothing \#'s 1, 3, 9, 10
(1) EXPLANATORY UARIABLE (OR PREDICTUR UARIABLE) HELPS EXPLAIN OR INFLUENCE CHANGE AND PLOTTED ON X-AXIS IS WATER TEMPERATURE

Response variable is Plotted on Yaxis Measures the outcome Is weight change (GROWTH OF CORAL)
EXPLANATORY VAR.
Both Variables are Quantitative.
(3)

(a) A POSITIVE ASSOCIATION WOVLD MEAN THAT STUDENTS WITH HigHERIQ'S TEND TO HAUE HIGHER GPA'S. THE PLOT SHOWS A DOSITIVE ASSOCiATION.
(b) The Form is Roughly Linear Because a line THROUGH THE SCATTER PLOT OF POINTS WOULD PROVIDE A GOOD SUMmary.
THE STRENGTH OF THE ASSOCIATION IS MODERATELY STRUNG BECAUSE MOST OF THE Points WOJLD $B E$ CLOSE TO THE LINE
(c) AN IQ SCORE OF TH E OUTLIER is ABOUT 103 WITH A GPA AROUND 0.5 .
3.1 CONT

9
(a)

$\operatorname{sPE\varepsilon D}(\mathrm{km} / \mathrm{h})$

Calculatur

$$
\begin{aligned}
& L_{1}=\text { SPEED } \\
& L_{2}=F O E L
\end{aligned}
$$

* SET WINDOW TO PLOT

$X_{\text {MIN }}=0$	$y_{\text {miN }}=0$
$X_{\text {MAX }}=160$	$y_{\text {MAX }}=25$
$X X C L=20$	$y_{\text {SCR }}=5$

musil $\operatorname{lab}^{A b L}$
(b) THE FORM OF THE PLOT is CURUED.

High Amunnts of Fuel were used fur low AND HIGH VALUE OF SPEEA, AND LOW AmOUNTS of FUEL Were USED BY DRIVING at moderate speeds. This form make sense because LOW FUEL EFFICIENCY octaves in city
DRIVING. (DRINJNG AJ LOW operas) AND SPEEDING ON THE HIGH WAY (DRIVING AT HigH SPE\&OS); WHILE BEJT FUEL EFFiciency occurs When Driving at moderate speeds.
(C) THE ASSOCIATION BETWEEN SPEED AND Fuel USED is VERY STRUNC BECAUSE IF YOU SKETCH A CURVED LINE, THERE WILL BEUERY LITLE DEVIATION BETWEEN THE POINTS AND THE CURVED LINE
3.1 Cunt
(10)

(b) Always Describe association in context AND INCLUDE (1) DIRECTIN (2) FORM (3) STRENGTH
"There is a positive, linear, and moderately strong association between the women's body mas and their resting metabolic rate,"
3.1B DAY 1 t's 15, 17, 21, 26, 27-32

15 a) $r=.9$
d) $r=-.3$
b) $r=0$
e) $r=-.9$
c) $r=.7$

17 a) Gender is categorical. Correlation applies only to 2 QuaNTITATIVE UARIABLE
b) If is impossible to have a Correlation OF 1.09. Correlation is betwee -1 and 1 .
c) A CORREIATIION $r=.23$ bushels is wrung. COrrelation hag no units
21) a) $r=.87$ means there is a strong linear association between salt content and Calories of hot dogs
b)

This point is probably close to the line of best fit. Removing a point that is Close to the line tends to decrease the strength of the correlation.

$r=0$ The Correlation Cue fficient r measures the strength of a LINEAR relationship between 2 quantitative variables. The plot shows a strong relationship; however it is a non linear relationship between speed and mileage.
3.1 CONT

27 a) the price of oil will predict price ot gas Explanatory var

Response liar
28 e) a strong positive association because we expect when oil increases sou dues gas; and we believe they are strongly associated
(29) d)

30 b) $r=1$ this would be a perfect association

31) C) $I Q=120-125 \quad A$ ADAN $:=0-10 \quad C \rightarrow I Q=124+R=10$

322 d) $r=.5$ The association is weak to moderately strong so the best answer is (d)
\qquad

I. Guessing correlation http://istics.net/stat/correlations/

a) There are 4 graphs, guess the value of the correlation coefficient.
b) For each set, how many did you get correct?

Do 5 data sets:
Set \#1: 14 Set \#2:_ 14 Set \#3:_ 14 Set \#4: $/ 4$ Set \#5: 14

II. Guessing Regression Line by Eye http://www.ruf.rice.edu/~lane/stat_sim/req_by_eye/

a) Using the mouse, to draw a LSRL. How close you are? The MSE which is the average squared deviation of points from the line) is displayed. Write down the MSE. You can draw another line and see if you can lower the MSE and get a better fit line. Circle the lowest MSE.
b) Now click the box that draws the line of best fit. Note any surprises you notice?
c) Now guess the correlation coefficient and click the box on the right hand side with your guess.
d) Finally click the "show r" to get the correct value and write down below

Do 3 sets:

Set \#1: List the MSE for the lines you drew: \qquad
For the LSRL, notice any surprises? \qquad
Correlation Coefficient: your guess $r=$ \qquad the correct $r=$ \qquad

Set \#2: List the MSE for the lines you drew: \qquad
For the LSRL, notice any surprises? \qquad
Correlation Coefficient: your guess $r=$ \qquad the correct $r=$ \qquad

Set \#3: List the MSE for the lines you drew: \qquad
For the LSRL, notice any surprises? \qquad the correct $r=$ \qquad
III. Regression Applet- Investigate Influential points http://www.stat.sc.edu/~west/javahtml/Regression.html
a) At the bottom of the graph you will find the LSRL and r.
b) See how adding points impacts your line. Add points by clicking on location of point.
c) Write the equation (round 2 decimals) and value of r (round 3 decimals).
(Original) $\hat{y}=$ \qquad $r=$ \qquad
$(10,200) \hat{y}=$ \qquad $r=$ \qquad
$(100,200) \hat{y}=$ \qquad
\qquad
$(200,100) \hat{y}=$ \qquad $r=$ \qquad
$(200,10) \quad \hat{y}=$ \qquad $r=$ \qquad

Which point(s) seem to have the greatest influence on changing the LSRL?

