5.4 Transforming to Achieve Linearity

What to do if data is non-linear:

Ladder of Powers

Watch Video David Bock "Ladder of Powers"

<u>http://media.pearsoncmg.com/cmg/pmmg_mml</u> <u>shared/flash_video_player/player.html?aw/aw</u> <u>deveaux_introstats_3/video/stat3dv_1000</u>

Transforming with Powers (don't memorize – see examples next slide)

- Facts about powers:
 - The graph of a power with exponent 1 (p = 1) is a straight line.
 - Powers greater than 1 give graphs that bend upward. The sharpness of the bend increases as the power increases.
 - Powers less than 1 but greater than 0 give graphs that bend downward.
 - Powers less than 0 give graphs that decrease as x increases. Greater negative values of p result in graphs that decrease more quickly.
 - The logarithm function corresponds to p = 0 (not the same as raising to the 0 power which is just a horizontal line at y = 1)

Here are **Samples of** Graphs and the to create a linear association

Transformation x and y³

Transformation x and y²

Transformations

Transformation x and y^(1/3)

Transformation x and y^(1/2)

Transformation x and log(y)

Transformation x and 1/y

Transformation x and 1/y²

The Logarithm Transformation

If an exponential model of the form $y = ab^x$ describes the relationship between x and y then we can use logarithms to transform the data to produce a linear relationship (and vice versa- if a transformation of (x,y) data to (x, log y) straightens our data, we know it's exponential

Algebraic Properties of Logarithms

 $\log_b x = y$ if and only if $b^y = x$

The rules for logarithms are

1.
$$\log_b (MN) = \log_b M + \log_b N$$

2.
$$\log_b (M/N) = \log_b M - \log_b N$$

- 3. $\log_b X^p = p \log_b X$
- So how does this work? well if we have the equation $y = ab^x$ and take the log of both sides:
 - $\log y = \log (ab^x)$
 - = log a + log b^x
 - = log a + log b (x) Does this look familiar?!

Summary of what you need to know about log transformations

- When data doesn't look straight, try both transformations: (x,y) to (x, logy) or (x, lny) and (logx, logy) or (lnx, lny)- **log and natural log are both fine!**
- Check which transformation did a better job straightening:
 - Make a scatterplot of each transformation. Do LinReg a+bx to check your r for each. The stronger the r, the better.
 - Also do a residual plot for each transformation to see which better fits the data (for exponential trial: L1, RESID. For Power Law trial: L3, RESID)
 - If your first transformation was better than it's an underlying exponential function fitting your data. If the second transformation was better than it's a power model.
 - Find the regression equation for your original untransformed data:
 - If it was exponential, $yhat = (10^a)(10^b)^x$
 - If it was a power model, $yhat = (10^a)(x^b)$