
5.4 Transforming to 
Achieve Linearity
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We go up the 
ladder to remove 
left skewness and 
down the ladder to 
remove right 
skewness.
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Ladder of Powers

Here V represents our variable of 
interest.  We are going to consider this 
variable raised to a power , i.e. V
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Watch Video 
David Bock “Ladder of 

Powers”
• http://media.pearsoncmg.com/cmg/pmmg_mml

_shared/flash_video_player/player.html?aw/aw
_deveaux_introstats_3/video/stat3dv_1000



Transforming with Powers 
(don’t memorize – see examples next slide)

• Facts about powers:  

• The graph of a power with exponent 1 (p = 1) is a straight line.

• Powers greater than 1 give graphs that bend upward.  The 
sharpness of the bend increases as the power increases.

• Powers less than 1 but greater than 0 give graphs that bend 
downward.  

• Powers less than 0 give graphs that decrease as x increases.  
Greater negative values of p result in graphs that decrease more
quickly.  

• The logarithm function corresponds to p = 0 (not the same as 
raising to the 0 power which is just a horizontal line at y = 1)



Transformation x and y^(1/3) Transformation x and y^(1/2)

Transformation x and y2Transformation x and y3

Transformation x and 1/y2Transformation x and 1/yTransformation x and log(y)

Here are 
Samples of 

Graphs

and 

the 
Transformations 

to create a 
linear 

association



The Logarithm Transformation
• If an exponential model of the form y = abx describes the relationship between x and y then we 

can use logarithms to transform the data to produce a linear relationship (and vice versa- if a 
transformation of (x,y) data to (x, log y) straightens our data, we know it’s exponential

• So how does this work?  well if we have the equation y = abx and take the log of both sides:

• log y = log (abx)

• = log a + log bx

• = log a + log b (x)     Does this look familiar?!



Summary of what you need to know about 
log transformations

• When data doesn’t look straight, try both transformations: (x,y) to (x, logy) or (x, lny) and 
(logx, logy) or (lnx, lny)- log and natural log are both fine!

• Check which transformation did a better job straightening: 

• Make a scatterplot of each transformation.  Do LinReg a+bx to check your r for each.  
The stronger the r, the better.  

• Also do a residual plot for each transformation to see which better fits the data (for 
exponential trial: L1, RESID.   For Power Law trial:  L3, RESID)

• If your first transformation was better than it’s an underlying exponential function fitting 
your data.  If the second transformation was better than it’s a power model.  

• Find the regression equation for your original untransformed data: 

• If it was exponential, yhat = (10^a)(10^b)^x   

• If it was a power model, yhat = (10^a)(x^b)


