5.4 Transforming to Achieve Linearity

What to do if data is non-linear:

Ladder of Powers

Here V represents our variable of interest. We are going to consider this variable raised to a power λ, i.e. V^{λ}

We go up the ladder to remove left skewness and down the ladder to remove right skewness.

Watch Video David Bock"Ladder of Powers"

- http://media.pearsoncmg.com/cmg/pmmg mml shared/flash video player/player.html?aw/aw deveaux introstats 3/videolstat3dv 1000

Transforming with Powers (don't memorize - see examples next slide)

Facts about powers:

- The graph of a power with exponent $1(p=1)$ is a straight line.
- Powers greater than 1 give graphs that bend upward. The sharpness of the bend increases as the power increases.
- Powers less than 1 but greater than 0 give graphs that bend downward.
- Powers less than 0 give graphs that decrease as x increases. Greater negative values of p result in graphs that decrease more quickly.
- The logarithm function corresponds to $p=0$ (not the same as raising to the 0 power which is just a horizontal line at $y=1$)

Here are Samples of Graphs
 and
 the
 Transformations to create a linear association

Transformation x and $\log (y)$

Transformation x and y^{3}

Transformation x and $y^{\wedge}(1 / 3)$

Transformation x and 1/y

Transformation x and y^{2}

Transformation x and $y^{\wedge}(1 / 2)$

Transformation x and $1 / y^{2}$

The Logarithm Transformation

- If an exponential model of the form $y=a b^{x}$ describes the relationship between x and y then we can use logarithms to transform the data to produce a linear relationship (and vice versa- if a transformation of (x, y) data to ($x, \log y$) straightens our data, we know it's exponential

$$
\begin{aligned}
& \text { Algebraic Properties of Logarithms } \\
& \qquad \log _{b} x=y \quad \text { if and only if } \quad b^{y}=x \\
& \text { The rules for } \operatorname{logarithms~are~}^{\text {1. } \log _{b}(M N)=\log _{b} M+\log _{b} N} \begin{array}{l}
\text { 2. } \log _{b}(M / N)=\log _{b} M-\log _{b} N \\
\text { 3. } \log _{b} X^{p}=p \log _{b} X
\end{array}
\end{aligned}
$$

So how does this work? well if we have the equation $y=a b^{x}$ and take the \log of both sides:

$$
\begin{aligned}
\log y & =\log \left(a b^{x}\right) \\
& =\log a+\log b^{x} \\
\cdot \quad & =\log a+\log b(x) \quad \text { Does this look familiar?! }
\end{aligned}
$$

Summary of what you need to know about log transformations

When data doesn't look straight, try both transformations: (x, y) to (x, logy) or (x, Iny) and (logx, logy) or (Inx, Iny)- log and natural log are both fine!

- Check which transformation did a better job straightening:
- Make a scatterplot of each transformation. Do LinReg a+bx to check your r for each. The stronger the r, the better.
- Also do a residual plot for each transformation to see which better fits the data (for exponential trial: L1, RESID. For Power Law trial: L3, RESID)
- If your first transformation was better than it's an underlying exponential function fitting your data. If the second transformation was better than it's a power model.
- Find the regression equation for your original untransformed data:
- If it was exponential, y hat $=\left(10^{\wedge} \mathrm{a}\right)\left(10^{\wedge} \mathrm{b}\right)^{\wedge} \mathrm{x}$
- If it was a power model, yhat $=\left(10^{\wedge} a\right)\left(x^{\wedge} b\right)$

