Inference Summary

	Confidence intervals (CIs)	Significance tests
STATE:	What <i>parameter</i> do you want to estimate, and at what confidence level?	What hypotheses do you want to test, and at what significance level? Define any parameters you use.
PLAN:	Choose the appropriate inference method. Check conditions.	Choose the appropriate inference method. Check conditions.
DO:	If the conditions are met, perform <i>calculations</i> .	If the conditions are met, perform <i>calculations.</i> • Compute the test statistic. • Find the <i>P</i> -value.
CONCLUDE:	Interpret your interval in the context of the problem.	Interpret the result of your test in the context of the problem.

CI: statistic \pm (critical value) \cdot (standard deviation of statistic)

Standardized test statistic = $\frac{\text{statistic} - \text{parameter}}{\text{standard deviation of statistic}}$

Inference about	Number of samples (groups)	Estimate or test	Name of procedure (TI Calculator function) Formula	Conditions
	1	Estimate	One-sample <i>z</i> interval for <i>p</i> (1-PropZInt) $\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	Random Data from a random sample or randomized experiment Normal At least 10 successes and failures; that is, $n\hat{p} \ge 10$ and $n(1 - \hat{p}) \ge 10$ Independent observations; <i>10% condition</i> if sampling without replacement
Proportions		Test	One-sample <i>z</i> test for <i>p</i> (1-PropZTest) $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	Random Data from a random sample or randomized experiment Normal $np_0 \ge 10$ and $n(1 - p_0) \ge 10$ Independent observations; <i>10% condition</i> if sampling without replacement
		Estimate	Two-sample <i>z</i> interval for $p_1 - p_2$ (2-PropZInt) $(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$	Random Data from random samples or randomized experiment Normal At least 10 successes and failures in both samples/ groups; that is, $n_1\hat{p}_1 \ge 10, n_1(1 - \hat{p}_1) \ge 10,$ $n_2\hat{p}_2 \ge 10, n_2(1 - \hat{p}_2) \ge 10$ Independent observations and independent samples/groups; 10% condition if sampling without replacement
	2	Test	Two-sample <i>z</i> test for $p_1 - p_2$ (2-PropZTest) $z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_c(1 - \hat{p}_c)}{n_1} + \frac{\hat{p}_c(1 - \hat{p}_c)}{n_2}}}$ where $\hat{p}_c = \frac{\text{total successes}}{\text{total sample size}} = \frac{X_1 + X_2}{n_1 + n_2}$	Random Data from random samples or randomized experiment Normal At least 10 successes and failures in both samples/ groups; that is, $n_1\hat{p}_1 \ge 10, n_1(1 - \hat{p}_1) \ge 10,$ $n_2\hat{p}_2 \ge 10, n_2(1 - \hat{p}_2) \ge 10$ Independent observations and independent samples/groups; 10% condition if sampling without replacement

•	Number of		Name of procedure	
Inference about	samples	Estimate	(TI Calculator function)	
about	(groups)	or test	Formula	Conditions
			One-sample t interval for μ (TInterval)	Random Data from a random sample or randomized experimen
		Estimate	(Tinterval)	Normal Population distribution Normal or large sample ($n \ge 30$
Means	1 (or paired data)		$\overline{x} \pm t * \frac{s_x}{\sqrt{n}}$ with df = $n-1$	Independent observations; 10% condition if sampling without replacement
			One-sample <i>t</i> test for μ	Random Data from a random sample or randomized experimen
		Test	(T-Test)	Normal Population distribution Normal or large sample ($n \ge 30$
			$t = \frac{\overline{x} - \mu_o}{s_x / \sqrt{n}}$ with df $= n - 1$	Independent observations; 10% condition if sampling without replacement
	2		Two-sample <i>t</i> interval for $\mu_1 - \mu_2$ (2-SampTInt)	Random Data from random samples or randomized experiment
		Estimate	$(\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	Normal Population distributions Normal or large samples $(n_1 \ge 30 \text{ and } n_2 \ge 30)$
			df = min($n_1 - 1$, $n_2 - 1$) or use technology	Independent observations and independent samples/groups; 10% condition if sampling without replacement
			Two-sample t test for $\mu_1 - \mu_2$ (2-SampTTest)	Random Data from random samples or randomized experiment
		Test	$t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{1 - \frac{s_2^2}{2}}}}$	Normal Population distributions Normal or large samples $(n_1 \ge 30 \text{ and } n_2 \ge 30)$
			$\sqrt{\frac{1}{n_1} + \frac{2}{n_2}}$ df = min(n_1 - 1, n_2 - 1) or use technology	Independent observations and independent samples/groups; 10% condition if sampling without replacement
	1	Test	Chi-square test for goodness of fit $(\chi^2 \text{GOF-Test})$	Random Data from a random sample or randomized experiment
				Large sample size: All expected counts at least 5
			$\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$	Independent observations; 10% condition if sampling without
Distribution of			with $df = number of categories - 1$	replacement
categorical variables			Chi-square test for homogeneity $(\chi^2-\text{Test})$	Random Data from random samples or randomized experiment
	2 or more	Test	$\chi^{\rm 2} = \sum \frac{({\rm observed} - {\rm expected})^2}{{\rm expected}}$	Large sample size: All expected counts at least 5
				Independent observations and independent samples/groups
			with df = (no. of rows -1) (no. of columns -1)	10% condition if sampling without replacement
Relationship between 2 categorical variables	1		Chi-square test of association/ independence (χ^2 -Test)	Random Data from a random sample or randomized experiment
		Test	\sim (observed – expected) ²	Large sample size: All expected counts at least 5
		1001	$\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$	Independent observations; 10% condition if sampling without
			with df = (no. of rows -1) (no. of columns -1)	replacement
	1	Estimate	One-sample <i>t</i> interval for β	Linear True relationship between the variables is linear
Relationship between 2 quantitative variables (slope)			(LinRegTInt)	Independent observations; 10% condition if sampling without
			$b \pm t^*$ (SE _b) with df = $n - 2$	replacement
		Test	One-sample <i>t</i> test for β (LinRegTTest)	Normal Responses vary Normally around regression line for all <i>x</i> -values
			$t = b - \beta_0$ with $dt = n - 2$	Equal variance around regression line for all x-values
			$t = \frac{b - \beta_0}{SE_b}$ with df $= n - 2$	Random Data from a random sample or randomized experimer