

Measures of variation give information on the **spread** or **variability** of the data values.

• The Range

Range = (highest value) - (lowest value)

MAT 120D Intro. Statistics

<u>**Comment</u>**: The range is the simplest measure of variation. In certain limited situation it can be very useful. It has obvious disadvantages:</u>

1. It ignores the way in which data are distributed

2. Sensitive to outliers:

• The Variance

IMPORTANT TO USE CORRECT VARIABLE NOTATIONS *** small n=sample size while *** capital N=population size

Population variance:

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (X_{i} - \mu)^{2}}{N} = \frac{(X_{1} - \mu)^{2} + (X_{2} - \mu)^{2} + \dots + (X_{N} - \mu)^{2}}{N}$$

Sample variance

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} = \frac{(X_{1} - \overline{X})^{2} + (X_{2} - \overline{X})^{2} + \dots + (X_{n} - \overline{X})^{2}}{n-1}$$

which is also called a point estimation of population variance.

Comments:

- 1. σ^2 is the average squared distance of observations to the population mean.
- 2. The unit of σ^2 is the square of the unit of the variable.

• The Standard Deviation

Population standard deviation: $\sigma = \sqrt{\sigma^2}$, that is,

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (X_i - \mu)^2}{N}} = \sqrt{\frac{(X_1 - \mu)^2 + (X_2 - \mu)^2 + \dots + (X_N - \mu)^2}{N}}$$

Sample standard deviation:
$$s = \sqrt{s^2}$$
 or

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}} = \sqrt{\frac{(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 + \dots + (X_n - \overline{X})^2}{n-1}}$$

MAT 120D Intro. Statistics

which is called a point estimation of population standard deviation.

Comments

1. σ and σ^2 are always positive.

2. The units of σ are the units of the variable.

An alternative formula for computing s or s^2 :

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1}$$

Remark: There are several different forms of formulas can be used to calculate the standard deviation of a given data set (sample or population). The tabular computation is recommended when doing manual computation:

An Illustrative Example: suppose we have a data set $A = \{1,4,7\}$

Based on the above table, we can see that the mean is 12/3=4, the standard deviation is $\sqrt{18/(3-1)} = 3$.

Another more general example: Fill in the table to calculate the sample standard deviation. Use 41.5 as the sample mean (xbar).

x	Deviation: <i>x</i> – x	xbar Squares: $(x^{-xbar})^2$
41	41 - 41.5 = -0.5	5 $(-0.5)^2 = 0.25$
38	5 = -3.	5 = 12.25
39	=-2.5	5 = 6.25
45	= 3.5	= 12.25
47	= 5.5	= 30.25
41	= -0.5	$2^2 = 0.25$
44	= 2.5	= 6.25
41	= -0.5	5 = 0.25
37	=-4.5	$2^2 = 20.25$
42	= 0.5	= 0.25
Total	$\Sigma_{0} = 0$	Σ = 88.5

$$s^{2} = \frac{\Sigma(x - \overline{x})^{2}}{n - 1} = \frac{88.5}{10 - 1} \approx 9.8$$

$$s = \sqrt{s^2} = \sqrt{\frac{88.5}{9}} \approx 3.1$$

Examples of datasets that have the same means with different variations

