Measures of Variation

Measures of variation give information on the spread or variability of the data values.

- The Range

Range $=$ (highest value) - (lowest value)

Example:

$$
\text { Range = } 14-1=13
$$

Comment: The range is the simplest measure of variation. In certain limited situation it can be very useful. It has obvious disadvantages:

1. It ignores the way in which data are distributed

2. Sensitive to outliers:

$$
\begin{gathered}
\text { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,2,2,2,2,2,2,2,2,3,3,3,3,4,5 } \\
\text { Range =5-1=4} \\
1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,120 \\
\text { Range = 120 - =1=119}
\end{gathered}
$$

- The Variance
*** capital $N=$ population size
Population variance:

$$
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}=\frac{\left(X_{1}-\mu\right)^{2}+\left(X_{2}-\mu\right)^{2}+\cdots+\left(X_{N}-\mu\right)^{2}}{N}
$$

Sample variance

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}=\frac{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}+\cdots+\left(X_{n}-\bar{X}\right)^{2}}{n-1}
$$

which is also called a point estimation of population variance.

Comments:

1. σ^{2} is the average squared distance of observations to the population mean.
2. The unit of σ^{2} is the square of the unit of the variable.

- The Standard Deviation

Population standard deviation: $\sigma=\sqrt{\sigma^{2}}$, that is,

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{N}\left(X_{i}-\mu\right)^{2}}{N}}=\sqrt{\frac{\left(X_{1}-\mu\right)^{2}+\left(X_{2}-\mu\right)^{2}+\cdots+\left(X_{N}-\mu\right)^{2}}{N}}
$$

Sample standard deviation: $\mathrm{s}=\sqrt{s^{2}}$ or

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}=\sqrt{\frac{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}+\cdots+\left(X_{n}-\bar{X}\right)^{2}}{n-1}}
$$

which is called a point estimation of population standard deviation.

Comments

1. σ and σ^{2} are always positive.
2. The units of σ are the units of the variable.

An alternative formula for computing s or s^{2} :

$$
s^{2}=\frac{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1}
$$

Remark: There are several different forms of formulas can be used to calculate the standard deviation of a given data set (sample or population). The tabular computation is recommended when doing manual computation:

An Illustrative Example: suppose we have a data set $\mathrm{A}=\{1,4,7\}$

Based on the above table, we can see that the mean is $12 / 3=4$, the standard deviation is $\sqrt{18 /(3-1)}=3$.

Fill in the table to calculate the sample
Another more general example: standard deviation.
Use 41.5 as the sample mean (xbar).

x	Deviation: x-xba	Squares: $\left(x\right.$-xbar) ${ }^{2}$
41	$41-41.5=-0.5$	$(-0.5)^{2}=0.25$
38	$i=-3.5$	${ }^{2}=12.25$
39	$=-2.5$	${ }^{2}=6.25$
45	$=3.5$	$=12.25$
47	$=5.5$	$=30.25$
41	$=-0.5$	${ }^{2}=0.25$
44	$=2.5$	$=6.25$
41	$=-0.5$	${ }^{2}=0.25$
37	$=-4.5$	${ }^{2}=20.25$
42	$=0.5$	$=0.25$
Total	$\Sigma=0$	$\Sigma \quad=88.5$

$$
\begin{gathered}
s^{2}=\frac{\Sigma(x-\bar{x})^{2}}{n-1}=\frac{88.5}{10-1} \approx 9.8 \\
s=\sqrt{s^{2}}=\sqrt{\frac{88.5}{9}} \approx 3.1
\end{gathered}
$$

Examples of datasets that have the same means with different variations

