Memorize:
\[H = -16T^2 + VT + S \]

Page 579 #s 51, 52, 53

51. \(\text{KI} \)
\[\begin{align*}
V &= 11 \text{ ft/sec} \\
S &= 0 \text{ ft} \\
H &= 0 \text{ ft}
\end{align*} \]

\[0 = -16T^2 + 11T + 0 \]

\[0 = -T(16T + 11) \]

\[\begin{align*}
-T &= 0 \\
T &= 0 \\
T &= \frac{11}{16} \approx 0.69 \text{ sec}
\end{align*} \]

Cat will land on the ground in about 0.69 sec.

52. \(\text{KI} \): \(V = 10 \text{ ft/sec} \)
\[S = 0 \text{ ft} \]

\(\text{a) Write an equation to model the function:} \]
\[H = -16T^2 + 10T \]

\(\text{b) Given time is } 0.3125 \text{ seconds} \)

\[H = h(0.3125) = -16(0.3125)^2 + 10(0.3125) \]

\[H = 1.5625 \text{ ft} \]

The maximum height the bug can jump is 1.5625 ft or about 1.56 ft.

53. \(\text{KI} \):
\[\begin{align*}
V &= 4.5 \text{ ft/sec} \\
h &= -16 + 2 + 4.5t
\end{align*} \]

\[0 = -t(16T - 4.5) \]

\[\begin{align*}
-t &= 0 \\
16T - 4.5 &= 0 \\
t &= 0.28 \text{ sec}
\end{align*} \]

EXPLAIN: There are 2 solutions (mean zeroes)

1. \(t = 0 \) seconds is when the penguin leaps out of the water.

2. \(t = 0.28 \) seconds is when the penguin lands back in the water.
a) Model for equation: \[h = -16T^2 + 72T + 3 \] or \[h(t) = -16T^2 + 72T + 3 \]

b) More KI \(H = 84 \text{ ft} \)

\[84 = -16T^2 + 72T + 3 \]

\[-84 \]

\[0 = -16T^2 + 72T + 81 \]

\[0 = -1(16T^2 - 72T + 81) \]

\[0 = -1(4T - 9)(4T - 9) \]

\[0 = -(4T - 9)^2 \]

\[4T - 9 = 0 \]

\[T = \frac{9}{4} = 2.25 \text{ seconds} \]

It will take 2.25 seconds before the ball is 84 ft above the ground.
149
KI:
\[V = 46 \text{ ft/sec} \]
\[H = 0 \text{ ft} \]
\[S = 6 \text{ ft} \]
\[h = -16T^2 + VT + S \]
\[O = -16T^2 + 46T + 6 \]
\[O = -2(8T^2 - 23T - 3) \]
\[O = -2(8T + 1)(T - 3) \]
\[-2x \quad 8T + 1 = 0 \quad T - 3 = 0 \]
\[T = -\frac{1}{8} \quad T = 3 \]
The bell will land on the ground in 3 seconds.

157
KI:
\[S = 16 \text{ ft} \]
\[H = 0 \text{ ft} \]
\[V = 0 \text{ ft/sec} \]
\[O = -16T^2 + VT + 16 \]
\[O = -16(T^2 - 1) \]
\[O = -16(T - 1)(T + 1) \]
\[T - 1 = 0 \quad T + 1 = 0 \]
\[T = 1, \quad T = -1 \]
The penney will land on the ground in 1 second.
CH 9 PRACTICE TEST Pg 621 #32

V = 4 ft/sec

\[S = 0 \text{ ft} \]

\[\text{Swoop} \]

\[\text{Cricket} \]

\[h = 0 \text{ ft} \]

\[\text{Lands} \]

(a) \[H = -16T^2 + VT + S \]

WRITE EQUATION TO MODEL THIS FUNCTION

\[H = -16T^2 + 4T \]

OR \[h(t) = -16T^2 + 4T \]

(b) Solve for \(H = 0 \text{ ft} \)

\[0 = -16T^2 + 4T \]

0 = \(-4T(4T - 1)\)

-4T = 0 \quad 4T - 1 = 0

\[T = 0 \quad T = \frac{1}{4} \]

(Answer in Words) THE CRICKET WILL LAND ON THE GROUND AT 25 SECONDS.