9.4 Solve Polynomial Equations in Factored Form

- Solve polynomial equations.

VOCABULARY

Example

\[f(x) = x^2 + 5x + 6 \]
\[x^2 + 5x + 6 = 0 \]

Factors

\[(x+3)(x+2) = 0 \]

Solve

\[x+3 = 0 \quad x+2 = 0 \]
\[x = -3 \quad x = -2 \]

Zero-Product Property

\[A \cdot B = 0 \]

Let \(a \) and \(b \) be real numbers. If \(ab = 0 \), then \(a \cdot 0 = 0 \) or \(0 \cdot b = 0 \).

Example 1

Use the zero-product property

Solve \((x - 5)(x + 4) = 0\).

Solution

\[(x - 5)(x + 4) = 0 \]

Write original equation.

\[x - 5 = 0 \quad \text{or} \quad x + 4 = 0 \]

Set each factor to property.

\[x = 5 \quad \text{or} \quad x = -4 \]

Solve for \(x \).

The solutions of the equation are \(x = -4, 5 \).

CHECK Substitute each solution into the original equation to check.

\[(5 - 5)(5 + 4) \neq 0 \quad (-4 - 5)(-4 + 4) \neq 0 \]

Check \(x = 5 \)

\[0 \cdot 9 \neq 0 \] \(\checkmark \)

Check \(x = -4 \)

\[-9 - 0 \neq 0 \] \(\checkmark \)

\(x = -3, 3 \) are Solutions and are called roots.
Example 2 **Find the greatest common monomial factor**

Factor out the greatest common monomial factor.

a. \(\frac{16x + 40y}{8} \)

\[16x + 40y = 8(2x + 5y) \]

Solution

Numbers — the largest number that goes evenly into all terms.

1. The GCF of 16 and 40 is \(8 \). The variables \(x \) and \(y \) have **no common factors**. So, the greatest common monomial factor of the terms is \(8 \).

\[16x + 40y = \frac{8(2x + 5y)}{8} \] **Factored into 2 terms**

b. The GCF of 6 and 30 is \(6 \). The GCF of \(x^2 \) and \(x^3 \) is \(x^2 \). So, the greatest common monomial factor of the terms is \(6x^2 \).

\[6x^2 + 30x^3 = \frac{6x^2(1 + 5x)}{6x^2} \]

Check mentally by multiplying

Solution

2. The GCF of 6 and 30 is \(6 \). The GCF of \(x^2 \) and \(x^3 \) is \(x^2 \). So, the greatest common monomial factor of the terms is \(6x^2 \).

\[6x^2 + 30x^3 = \frac{6x^2(1 + 5x)}{6x^2} \]

Check mentally by multiplying

Example 3 **Solve an equation by factoring**

Solve the equation.

a. \(3x^2 + 15x = 0 \)

Original equation

\[3x(x + 5) = 0 \]

Factor left side.

Zero-product property

\[3x = 0 \quad \text{or} \quad x + 5 = 0 \]

\[x = 0 \quad \text{or} \quad x = -5 \]

Solve for \(x \).

The solutions of the equation are

\[x = 0, -5 \]

Tip: Use a calculator to check roots.

b. \(9b^2 = 24b \)

Original equation

\[\frac{9b^2 - 24b}{3b} = 0 \]

Subtract \(24b \) **from each side.**

To set the equation to 0.

\[3b(3b - 8) = 0 \]

Factor left side.

Zero-product property

\[3b = 0 \quad \text{or} \quad 3b - 8 = 0 \]

\[b = 0 \quad \text{or} \quad b = \frac{8}{3} \]

Solve for \(b \).

The solutions of the equation are

\[b = 0, \frac{8}{3} \]

For Fractions

1. **Do not change to decimals**
2. **Reduce** (ex \(\frac{4}{6} \rightarrow \frac{2}{3} \))
3. **Leave as an improper fraction** (ex \(\frac{5}{2} \))

\[c: q \left(\frac{8}{3} \right)^2 = 24 \left(\frac{8}{3} \right) \]

\[\frac{64}{9} = \frac{64}{9} \]
Your Notes

Checkpoint Solve the equation.

1. \((x + 6)(x - 3) = 0\)
 - \(x + 6 = 0\)
 - \(x = -6\)
 - \(C: \boxed{0} \cdot \boxed{-6} = 0\)
 - \(x - 3 = 0\)
 - \(x = 3\)
 - \(C: \boxed{9} \cdot \boxed{0} = 0\)

2. \((x - 8)(x - 5) = 0\)
 - \(x - 8 = 0\)
 - \(x = 8\)
 - \(C: \boxed{0} \cdot \boxed{3} = 0\)
 - \(x - 5 = 0\)
 - \(x = 5\)
 - \(C: \boxed{-3} \cdot \boxed{0} = 0\)

Checkpoint Factor out the greatest common monomial factor.

3. \(10x^2 - 24y^2 \quad \text{<=7} \quad 2 \left(5x^2 - 12y^2\right)\)
 - \(\text{Equivalent Expressions}\)

4. \(3t^6 + 8t^4 \quad \boxed{t^4} \left(3t^2 + 8\right)\)