8.6 Write and Graph Exponential Decay Functions

Goal • Write and graph exponential decay functions.

VOCABULARY

a) Exponential decay is a function which begins decreasing at anslow rate, then keeps declining faster and faster.

EXAMPLE 1: Graph an exponential decay function

Graph the function $y = \left(\frac{1}{3}\right)^x$ and identify its domain and range.

Step 1 Make a table by choosing a few values for x and finding the values of y.

x	-2	-1	0	1	2
у	9	3	1	43	49
	(1/2)-	2 (1/3)	(1/3)	1/3/1	(43)

$$\left(\frac{1}{3}\right)^{2} = \left(3\right)^{2} = 9$$
 $\left(\frac{1}{3}\right)^{-1} = 3^{1} = 3$

Step 2 Plot the points; and <u>Draw</u> a smooth curve through the points.

Step 3 From either the table or the graph, you can see that the domain is

e table of the Brak	20 52		
$D: X = \alpha \parallel$	recl	numbers	NOTE OF THE PERSON NAMED IN

Step 4 From either the table or the graph, you can see that the range is

EXAMPLE 2: Compare graphs of exponential decay and exponential growth functions

Graph $y = 3^x$. Compare the graph with the graph of $y = \left(\frac{1}{3}\right)^x$

Steps:

- a) Graph the function: $y = \left(\frac{1}{3}\right)^x$
 - Fill in the table of values, plot the points, and draw a smooth curve through the points.
 - What is the **domain** is and **range** for the function?
 - o D: X= all real numbers
 - · R: y = all positive real numbers
- b) Graph the function: $y = 3^{\circ}$.
 - Fill in the table of values, plot the points, and draw a smooth curve through the points.
 - What is the **domain** is and **range** for the function?
 - · D: X = all real numbers
 - · R: y = all positive real numbers.
- c) How are the graphs different?

* They have the same domain and range * Growth starts very small and then explodes when X I's Positive (3,9,27,81...

* Decay storts very large then becomes

x	$y = \left(\frac{1}{3}\right)^x$	$y = 3^x$
-2	9	3-2 = 1/9
-1	3	3-1=1/3
0	1	30 = 1
1	1/3	31 = 3
2	1/9	32=9

Prior Exemple #1

EXAMPLE 3: Compare graphs of exponential decay functions

Graph $y = 2 \bullet \left(\frac{1}{3}\right)^x$. Compare the graph with the graph of $y = \left(\frac{1}{3}\right)^x$

Steps:

- a) Graph the function: $y = \left(\frac{1}{3}\right)^x$
 - Fill in the table of values, plot the points, and draw a smooth curve through the points.
- b) Graph the function: $y = 2 \cdot \left(\frac{1}{3}\right)^x$.
 - Fill in the table of values, plot the points, and draw a smooth curve through the points.
- c) What is the domain is and range for each function? They are the same

 - D: X = all real numbers
 R: Y = all positive real numbers
- d) How are the graphs different? Fill in the blank
 - For the function, $y = 2 \cdot (1/3)^x$, the y-values are corresponding y-values for the function, $y = (1/3)^x$.

x	$y = \left(\frac{1}{3}\right)^x$	$y = 2 \bullet \left(\frac{1}{3}\right)^x$
-2	9	2.9 = 18
-1	3	a.3= b
0	\	21 = 2
1	13	2.1/3= 2/3
2	19	2.1/9=2/9

FROM ple Exemple

Checkpoint Complete the following exercise.

1. Graph $y = -2 \cdot \left(\frac{1}{3}\right)^x$. Identify its domain and range.

D: X=all reol#15

2. How are graphs $y = \left(\frac{1}{3}\right)^x$ and $y = -2 \cdot \left(\frac{1}{3}\right)^x$ different?

To Y volves have doubled (2) Graph has flipped and reflects around the X-axis

SUMMARY EXPONENTIAL GROWTH AND DECAY

EXPONENTIAL GROWTH MODEL $y = ab^x$, a > 0 and b > 1Growth is when greater than 1

EXAMPLE 4: Classify functions

For each exponential function, tell whether the graph represents growth or decay; AND WHY!

a) $y = \left(\frac{4}{3}\right)^x$ B = $\frac{4}{3}$ which is greater than 1 (GROWTH

- b) $y = \frac{1}{2}(6)^x$ B = 6 > 1 (GROWTH)
- c) $y = 8(.25)^x$ $B = .25 = \frac{1}{4}$ which is between 0 < b < 1 (Decay) Page | 4