8.5 Write and Graph Exponential Growth Functions

Goal • Write and graph exponential growth models.

VOCABULARY

* Exponential function is a function which begins increasing at a very slow rate, then keeps growing fester and faster.

EXAMPLE: $2^{\times} = 1^{\circ}, 2^{\circ}, 4^{\circ}, 8, 16, 32, 64, 128, 256, 512...$ What is $2^{18} \rightarrow 2 \times 12 = 4.096$ What is $2^{18} \rightarrow 2 \times 18 = 262, 144$

EXAMPLE 1: Graph an exponential function

Graph the function $y = 3^x$. Identify its domain and range.

Step 1 Make a table by choosing a few values for x and finding the values of y.

Step 2 Plot the points; and Draw a smooth curve through the points.

Step 3 From either the table or the graph, you can see that $\underline{\text{the domain}}$ is

Step 4 From either the table or the graph, you can see that the range is

VOCABULARY

Exponential Growth Model

$$y = a(1+r)^t$$
 y = the value of the investment

a is the <u>initial amount</u>. r is the <u>Growth Rate</u>.

1+r is the <u>growth factor</u>. t is the <u>Time Period</u>.

VOCABULARY

Compound interest problems are an application of the Exponential Growth Model

EXAMPLE 3: Solve a compound interest problem

Investment You put \$250 in a savings account that earns 4% annual interest compounded yearly. You do not make any deposits or withdrawals. How much will your investment be worth in 10 years?

Key information:

- The initial amount is \$\\\\\$250
- the interest rate is 40, or .04, and the time period is 10 years

$y = a(1+r)^t$	Use the "Exponential Growth Formula"		
y= 250(1+.04)10	Substitute: $a = 250 r = .04 t = 10$		
4 = 250 (1.04) 10 _	Simplify.		
~ \$370.06	Use a calculator.		
You will havein 10 years.	250 * 1.04 10 =		
your investment has increased (370.061		
3 \$ 120.06			

Checkpoint Complete the following exercise.

4. In Example 3, suppose the annual interest rate is 5%. How much will your investment be worth in 10 years? a=\$250 r=5%=.05 t=10yrs

EXAMPLE 2: Compare graphs of exponential functions

Graph $y = 2 \cdot 3^x$. Compare the graph with the graph of $y = 3^x$.

Steps:

- a) Graph the function: $y = 3^x$
 - Fill in the table of values, plot the points, and draw a smooth curve through the points.
- b) Graph the function: $y = 2 \cdot 3^x$
 - Fill in the table of values, plot the points, and draw a smooth curve through the points.
- c) What is the <u>domain</u> is and <u>range</u> for each function? THEY ARE THE SAME
 - · D: X = all real numbers
 - · R: /= all positive real numbers.
- d) How are the graphs different? Fill in the blank
 - For the function, $y = 2 \cdot 3^x$, the y-values are double twice the corresponding y-values for the function, $y = 3^x$.
 - · the shapes are the same

x	$y=3^x$	$y = 2 \cdot 3^x$		
- 2	49	2/9		
-1	1/3	7/3		
0		2		
1	3	6		
2	9	18		

SEE example

- Checkpoint Complete the following exercises.
 - 1. Graph $y = 4^x$. Identify its domain and range.

			У		
		14	-	1	
		10-			
	The second secon	-6-			
/		-2	1		
1	-3	-1		3	1.

Domain: x = all real numbers

Range: y = all positive real numbers

2. Graph $y = -2 \cdot 4^x$. Identify its domain and range.

Range: y = all real #15
Range: y = all real
negative #15

- 3. How are graphs $y = 4^x$ and $y = -2 \cdot 4^x$ different?
 - 1) the y-coordinate is double for y=-2.4x
 - 2) the graphisa mirror image with the leading coef, being negative (-2) and this is a reflection about the Page | 3

 X-axis.