Solve Linear Systems by Adding or Subtracting

Goal
- Solve linear systems using elimination. *(also called linear combination)*

SOLVING A LINEAR SYSTEM USING THE ELIMINATION METHOD

Step 1
ADD the equations to **eliminate** one variable.

Step 2
Solve the resulting equation for the other variable.

Step 3
Substitute in either original equation to **find** the value of the other variable.

Step 4
Check (x, y) in both original equations.

Example 1 Use addition to eliminate a variable

Solve the linear system:

- $x + 5y = 9$
- $4x - 5y = -14$

Solution

1. **ADD** the equations to eliminate one variable.

 $x + 5y = 9$

 $4x - 5y = -14$

 \[
 \begin{align*}
 5x & = -5 \\
 x & = -1
 \end{align*}
 \]

2. Solve for $x = -1$

3. Substitute $x = -1$ in either equation

 \[
 \begin{align*}
 x + 5y & = 9 \\
 -1 + 5y & = 9 \\
 5y & = 10 \\
 y & = 2
 \end{align*}
 \]

 The solution is $(x, y) = (-1, 2)$.

4. **CHECK** in the original Eqs.

 $c: -1 + 5(2) = 9$

 $9 = 9 √$

 $c: 4(-1) - 5(2) = -14$

 $-4 - 10 = -14$

 $-14 = -14 √$

Notes

- **Equations** must be in **standard form**

 $Ax + By = C$

 A, B, C are **integers**

- **Flavors**
 - Addition
 - Subtraction
 - Multiplication

Make sure to check your solution by substituting it into each of the original equations.
Example 2

Use subtraction to eliminate a variable

Solve the linear system:

\[3x - 4y = 2 \quad \text{Equation 1} \]
\[3x + 2y = 26 \quad \text{Equation 2} \]

Solution

1. Multiply 1 equation by -1:
 \[3x - 4y = 2 \quad \rightarrow \quad -3x + 4y = -2 \]
 to eliminate one variable.

2. Solve for \(y \):
 \[3x + 2y = 26 \quad \rightarrow \quad y = 4 \]

3. Substitute \(y = 4 \) into either equation and solve for the other variable (x):
 \[3x + 2(4) = 26 \quad \rightarrow \quad x = 6 \]

 The solution is \((6, 4)\).

4. Check:
 \[3(6) - 4(4) = 2 \]
 \[3(6) + 2(4) = 26 \]

Checkpoint

Solve the linear system.

1. \(-8x + 3y = 12\)
 \[8x - 9y = 12 \]
 \[-8y = 24 \quad \rightarrow \quad y = -4 \]

2. \(x + 6y = 13\)
 \[-2x + 6y = -8 \]
 \[2x + 4y = 12 \]
 \[3x = 2y \quad \rightarrow \quad x = -3 \]

 \[-2(3) + 4(-4) = 12 \]
 \[12 = 12 \]

3. \(7x + 6y = 13\)
 \[-2(7) + 6(1) = -8 \]
 \[13 = 13 \]
 \[-8 = -8 \]
Example 3: Arrange like terms

Solve the linear system: 6x + 7y = 16
\[y = 6x - 32 \]

Solution

1. **Rewrite** Equation 2 so that the like terms are arranged in columns. **Put in Standard Form**

 \[
 6x + 7y = 16 \\
 y = 6x - 32 \\
 \frac{6x}{6} + \frac{7y}{6} = \frac{16}{6} \\
 \]

2. **Add** the equations.

 \[
 6x + 7y = 16 \\
 \underline{y = 6x - 32} \quad \frac{8y}{8} = \frac{-16}{8} \\
 \]

 The solution is \((5, -2) \).

3. **Checkpoint** Solve the linear system.

 3. \(4x - 5y = 5 \Rightarrow 4x - 5y = 5 \quad \frac{3x}{3} = \frac{15}{3} \quad x = 5 \)

 \[
 \begin{align*}
 4(5) - 5y &= 5 \\
 20 - 5y &= 5 \\
 -5y &= -15 \\
 y &= 3
 \end{align*}
 \]

 4. \(7y = 4 - 2x \Rightarrow 2x + 7y = 4 \quad \frac{2x + 7y}{2} = \frac{12}{2} \quad y = 2 \)

 \[
 \begin{align*}
 7(2) &= 4 - 2x \\
 14 &= 4 - 2x \\
 -2x &= -10 \\
 x &= 5
 \end{align*}
 \]
When to use \textbf{Method} \\
(\textit{Equations must be in standard form}) \\
\textit{Ax + By = C}

\begin{enumerate}
\item \textbf{Addition:} USE when 1 of the variables has \underline{opposite coefficients}. \textit{Ex:}
\begin{align*}
2x + 2y &= 10 \\
3x - 2y &= 40
\end{align*}

\item \textbf{Subtraction:} Use when 1 of the variables has the same coefficient \textit{Ex:}
\begin{align*}
5x + 2y &= 10 \\
5x + 5y &= 50 \quad \textarrow{Multiply 1 equation by -1; Then Follow Addition method.}
\end{align*}

\item \textbf{Multiplication:} Use when you cannot use \underline{Addition or Subtraction methods}
\begin{align*}
2x + 4y &= 10 \\
-6x - 6y &= -12
\end{align*}
\textit{Goal is to eliminate 1 variable by multiplying for both equations to get opposite coefs for 1 of the variables}
\end{enumerate}