Write Equations of Parallel and Perpendicular Lines

Goal • Write equations of parallel and perpendicular lines.

VOCABULARY

<table>
<thead>
<tr>
<th>reciprocal</th>
<th>reciprocal with opposite signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>negative reciprocal</td>
<td>negative reciprocal with opposite signs</td>
</tr>
</tbody>
</table>

Perpendicular lines • 2 lines that intersect and form a right (90°) angle (⊥)

Examples

<table>
<thead>
<tr>
<th>Given m</th>
<th>negative reciprocal</th>
<th>reciprocal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m = -\frac{5}{3})</td>
<td>(\frac{1}{5})</td>
<td>(\frac{3}{5})</td>
</tr>
<tr>
<td>(m = \frac{1}{2})</td>
<td>-2</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(m = \frac{3}{4})</td>
<td>-(\frac{4}{3})</td>
<td>(\frac{4}{3})</td>
</tr>
<tr>
<td>(m = -\frac{4}{6})</td>
<td>(\frac{6}{4})</td>
<td>(\frac{3}{2})</td>
</tr>
</tbody>
</table>

PARALLEL LINES // lines

If two nonvertical lines have the same slope, then they are parallel.

If two nonvertical lines are //, then they have the same slope.

Example 1 Write an equation of a parallel line

Write an equation of the line that passes through \((2, 4)\) and is parallel to the line \(y = 4x + 1\).

Solution

1. **Step 1** Identify the slope: The graph of the given equation has a slope of \(4\). So, the parallel line through \((2, 4)\) has a slope of \(4\).

2. **Step 2** Write equation in point-slope form: \(y - y_1 = m(x - x_1)\).

 \[m = 4 \]
 \[y = 4 = 4(x - 2) \]

3. **Step 3** Write an equation in slope-intercept form: \(y = mx + b\).

 \[y - 4 = 4x - 8 \]
 \[y = 4x - 4 \]

4. **Step 4** Write equation in standard form: \(Ax + By = C\).

 \[4x - 4y = -4 \]

Notice // lines:
- Given: \(y = 4x + 1\)
- Found // line: \(y = 4x - 4\)
Checkpoint Complete the following exercises.

1. Write an equation of the line that passes through \((-4, 6)\) and is parallel to the line \(y = -3x + 2\). Given Line

 \[
 \text{We want a line through pt } (-4, 6)
 \]

 \[
 \text{1. } m = -3
 \]

 \[
 \text{2. put into p1s: } y - 6 = -3(x + 4)
 \]

 \[
 \text{3. if asked put into slope-intercept}
 \]

 \[
 y - 6 = -3x - 12
 \]

 \[
 \frac{+6}{+6}
 \]

 \[
 y = -3x - 6
 \]

Perpendicular Lines

If two nonvertical lines have the slopes that are **negative reciprocals**, then the lines are **perpendicular**. A horizontal line and a vertical line are **always perpendicular**.

Example 2 Determine parallel or perpendicular lines

Determine which of the following lines, if any, are parallel or perpendicular:

Line a: \(12x - 3y = 3\) \(\leftarrow m = 4\)

Line b: \(y = 4x + 2\) \(\leftarrow y = mx + b\) \(m = 4\)

Line c: \(4y + x = 8\) \(\leftarrow m = -\frac{1}{4}\)

Solution

Find the slopes of the lines.

Line b: The equation is in slope-intercept form. The slope is \(\frac{4}{1}\).

Write the equations for lines a and c in slope-intercept form.

Line a: \(12x - 3y = 3\)

\[
\frac{-12x}{-3} = \frac{-3y}{-3} = \frac{3}{-3}
\]

\[
y = 4x - 1
\]

Line c: \(4y + x = 8\)

\[
\frac{4y}{4} = \frac{-x}{4} + \frac{8}{4}
\]

\[
y = -\frac{1}{4}x + 2
\]

Lines a and b have a slope of \(\frac{4}{1}\), so they are **parallel**.

Line c has a slope of \(-\frac{1}{4}\), the negative reciprocal of \(\frac{1}{4}\), so it is **perpendicular** to lines a and b.
1. Find slope:

IF NECESSARY PUT INTO S/I \(y = mx + b \)

2. Determine which of the following lines, if any, are parallel or perpendicular.

Line a: \(4x + y = 2 \) \(m = -4 \)
Line b: \(5y + 20x = 10 \) \(m = -4 \)
Line c: \(8y = 2x + 8 \) \(m = 1/4 \)

Example 3 Determine whether lines are perpendicular

Determine if the following lines are perpendicular.

Line a: \(6y = 5x + 8 \)
Line b: \(-10y = 12x + 10 \)

Solution

Find the slopes of the lines. Write the equations in slope-intercept form.

Line a: \(6y = 5x + 8 \)
\[y = \frac{5}{6}x + \frac{8}{6} \]
\[m = \frac{5}{6} \]

Line b: \(-10y = 12x + 10 \)
\[y = -\frac{6}{5}x - 1 \]
\[m = -\frac{6}{5} \]

The slope of line a is \(\frac{5}{6} \). The slope of line b is \(-\frac{6}{5} \).

The two slopes \(\text{are} \) negative reciprocals, so lines a and b \(\text{are} \) perpendicular.

Check your answer using slopes.

\(M = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \)

Checkpoint Complete the following exercises.

3. Determine whether line a through (1, 3) and (3, 4) is perpendicular to line b through (1, -3) and (2, -5).

Justify your answer using slopes.

Line a: \((1,3) \) (3, 4)
\[m = \frac{3 - 4}{1 - 3} = \frac{-1}{-2} \]
\[m = \frac{1}{2} \]

Line b: \((1,-3) \) (2, -5)
\[m = \frac{-3 + 5}{1 - 2} = \frac{2}{-1} \]
\[m = -2 \]

Lines A and B are \(\bot \)
Example 4: Write an equation of a perpendicular line in all 3 linear eq. forms.

Write an equation of the line that passes through \((-3, 4)\) and is perpendicular to the line \(y = \frac{1}{3}x + 2\).

Solution:

1. **Step 1**: Identify the slope. The graph of the given equation has a slope of \(\frac{1}{3}\). Because the slopes of perpendicular lines are negative reciprocals, the slope of the perpendicular line through \((-3, 4)\) is \(-3\) (\(\perp m = -3\)).

2. **Step 2**: Write equation in point-slope form: \(P/S\) \(y - y_1 = m(x - x_1)\)

\[P/S: \quad y - 4 = -3(x + 3)\]

3. **Step 3**: Write equation in slope-intercept form: \(S/I\) \(y = mx + b\)

\[S/I: \quad y = -3x - 5 \quad \text{b} = -5\]

4. **Step 4**: Write equation in standard form: \(S/T\) \(Ax + By = C\)

\[S/T: \quad 3x + y = -5\]

Homework:

5.5 HW:

- Pg 321
- #5 1, 2, 3, 24 (3x), and 35

4. Write an equation of the line that passes through \((4, -2)\) and is perpendicular to the line \(y = 5x + 2\).

\[\perp m = -\frac{1}{5}\]

\[P:\quad (4, -2)\]

IN ALL 3 FORMS:

- **P/S**: \(y + 2 = -\frac{1}{5}(x - 4)\)
 \[y + 2 = -\frac{1}{5}x + \frac{4}{5}\]

- **S/I** \(\frac{1}{5}x + y = -\frac{6}{5}\)

- **STANDARD**: \(x + 5y = -6\)