4.6 Model Direct Variation

Goal · Write and graph direct variation equations.

Your Notes

VOCABULARY / IS A SPECIAL LIN	E
Direct variation The relationship of two variables, x and y , provided $y = ax$ and $a \neq 0$	
DUEQ: Y= AX AKA> Y=MX+0	
Constant of variation In $y = ax$, a is called the constant of variation.	
the slope (m)

EVERY DIRFIT VARIATION LINE GOESTHROUGH THE ORIGIN (0,0) B=0

Example 1 Identify direct variation equations

Tell whether the equation represents direct variation. If so, identify the constant of variation.

a.
$$4x + 2y = 0$$

Solution

To tell whether an equation represents direct variation, try to rewrite the equation in the form y = ax.

a.
$$4x + 2y = 0$$
 Write original equation.

$$2y = -4x$$

$$y = -2x$$

Because the equation 4x + 2y = 0 can be rewritten in the form y = ax, it represents direct variation. The constant of variation is -2.

Example 1 Identify direct variation equations

Tell whether the equation represents direct variation. If so, identify the constant of variation.

$$b. -2x + y = 3$$

b.
$$-2x + y = 3$$
 Write original equation. $y = 2x + 3$ Add $2x$ to each side.

Because the equation $-2x + y = 3$ cannot be rewritten in the form $y = ax$, it does not represent

Your Notes

Checkpoint Tell whether the equation represents direct variation. If so, identify the constant of variation.

2. 5x + y = 1

1.
$$3x + 4y = 0$$

$$4y = -3x$$

$$-3/4$$

$$-3/4$$

$$\mathcal{L} = -5 \times + 1$$

Example 2 Graph direct variation equations

Graph the direct variation equation.

a.
$$y = -5x$$

b.
$$y = \frac{3}{5}x$$

Solution

a. Plot a point at the origin. The slope is equal to the constant of variation, or ______. Find and plot a second point, then draw a line through the points.

The graph of a direct variation equation is a line with a slope of a and a y-intercept of 0. This line passes through the origin.

$$y = -5x$$
 $m = -5/1$
 $b = 0$

b. Plot a point at the origin. The slope is equal to the constant of variation, or $\frac{3}{5}$. Find and plot a second point, then draw a line through the points.

Your Notes

Example 3 Write and use a direct variation equation

The graph of a direct variation equation is shown.

- a. Write the direct variation equation.
- b. Find the value of y when x = 80.

GRAPH GRAPH

Solution

Because y varies directly with x, the equation has the form y = ax. Use the fact that y = -3 when x = -4MFTHOD2(PT

$$y = ax$$

$$-3 = a(-4)$$

Write direct variation equation.

$$\frac{3}{4} = a$$

Solve for a. (-4, -3)

A direct variation equation that relates x and y is

b. When x = 80,

$$\sqrt{3} = 3/4/X$$

LOOK AT GRAPH TO WRITE D.V. EQ

- Checkpoint Complete the following exercises.
 - 3. Graph the direct variation equation $y = \frac{1}{2}x$.

4. The graph of a direct variation equation passes through the point (3, -4). Write the direct variation equation and find the value of y when x = 15.

equation and find the value of $\begin{bmatrix} \times & \times & \times \\ & & & \\ & & & \end{bmatrix}$

